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Abstract. The absolute majority of software today is developed collaboratively
using collaborative version control tools such as Git. It is a common practice that
once a vulnerability is detected and fixed, the developers behind the software is-
sue a Common Vulnerabilities and Exposures or CVE record to alert the user
community of the security hazard and urge them to integrate the security patch.
However, some companies might not disclose their vulnerabilities and just up-
date their repository. As a result, users are unaware of the vulnerability and may
remain exposed.
In this paper, we present a system to automatically identify security patches using
only the developer behavior in the Git repository without analyzing the code itself
or the remarks that accompanied the fix (commit message). We showed we can
reveal concealed security patches with an accuracy of 88.3% and F1 Score of
89.8%. This is the first time that a language-oblivious solution for this problem is
presented.

Keywords:
CVE, Machine Learning, Git, GitHub, LSTM, Conv1D

Introduction

The absolute majority of software today is developed collaboratively, where developers
work separately on a different part of the software, and then merge their code with the
rest of the software. To allow this collaboration, source control tools, such as Git, were
developed. Git is a standard protocol that supports file versioning, which is extensively
used by programmers to collaborate on software development. A repository of files is
maintained by GIT, allowing operations such as updating files (push/commit), merging
file versions (merge), and splitting a project into two branches (fork).

A hosting service such as GitHub4 allows users to maintain and share a repository,
and also allows tracking issues such as bug reports, feature suggestions, fork reposito-
ries, maintain merge requests, etc. This makes GitHub an ecosystem of software, where
interaction among developers reveal patterns of behavior [6]. For example, adding a

4 https://github.com/



Nitzan Farhi, Noam Koenigstein, and Yuval Shavitt

new feature to a repository may trigger many forks to the repository since other people
will want to modify the feature.

Software is naturally prone to errors, and some of them can be exploited by hackers
to abuse the software for malicious acts. These errors are often called vulnerabilities
and are usually fixed by a software update called a security patch. Vulnerabilities can
be divided into 2 classes: 0-day, a vulnerability that is not known to the public and still
does not have a security patch, and N-day, one that has a security patch.

The Common Vulnerabilities and Exposures (CVE5) is a glossary of publicly dis-
closed vulnerabilities. This CVE glossary details the vulnerability date, description,
references, and metrics regarding the vulnerability such as its complexity whether user
interaction is required, and more. Vulnerabilities are analyzed and the Common Vulner-
ability Scoring System (CVSS) is employed to evaluate the threat level. The CVE score
is often used for prioritizing the security of vulnerabilities.

It is a common practice that once a vulnerability is detected and fixed, the company
or individuals behind the software issue a CVE to alert the user community of the
security threat, hopefully urging them to integrate the security patch. However, some
companies might not disclose their vulnerabilities and just update their repository. This
behavior may be in order to allow certain users to use the patch sooner, as a measure
of “Security by obscurity”, or to avoid public embarrassment. The disadvantage of not
disclosing vulnerabilities is that users will not be aware that their software needs to be
updated, while hackers can notice the code changes, detect a vulnerability, and exploit
it.

Recent work [11, 13] has shown the ability to analyze source code changes and com-
mit messages using natural language processing models. These aforementioned models
rely on a certain programming language or on the natural language used in the com-
ments and commit messages. Hence, these earlier models are limited in their ability
to detect security patches on a repository that uses other programming languages or
where comments are written in a different natural language. For example, a model that
was trained on detecting security patches in C++ would not be able to detect security
patches in a Perl repository, and since it is less popular, gathering a sufficient amount
of data to train a model for Perl would be difficult.

In this paper, we propose a method that trains a deep learning (DL) model to rec-
ognize the user behavioral data around a security patch of a repository on GitHub (a
window of events that will be defined in the Data Pre-processing Section), and uses
CVE publications to label if it is related to a security patch. Importantly, our model is
insensitive to the programming language, or the natural language used by the develop-
ers. This allows us to identify security patches in languages that are rather rare and thus
do not have sufficient data to train a model. Our model was able to achieve an accu-
racy of 88.32% and an F1-Score of 89.75% in detecting a security patch. Hence, our
approach can be effectively used for detecting undisclosed security patches.

Since GitHub behavioral data is temporal (various actions over time), we experi-
mented with appropriate models such as Long-Short Term Memory (LSTM) [5] and
1-Dimensional Convolutional Neural Network (Conv1D), which allow calculating re-

5 https://cve.mitre.org/
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lations between features at different time points. Note that we do not require Natural
Language processing or manual labeling to detect security patches.

We made the source code for our data extraction and our models publicly available
at GitHub6. The relevant data-set is available as well7. We note that our published data-
set covers more repositories than any previous work.

Related Work

In this section, we provide an overview of different works in the field of detecting
security patches using the CVE Program.

PatchDB [12] is a dataset of security patch commits on C/C++ projects. Each patch
commit contains the additions and deletions made to the code and a commit message.
This dataset was created by extracting security patch commits using the CVE Program
(we use a similar extracting technique for our data collection). PatchDB was used in
PatchRNN [13] where natural language processing methods were employed to detect
which commit is a security patch. This is done by tokenizing the commit message, the
additions, and the deletions. Later, the tokens were fed into an LSTM neural network to
provide a prediction regarding a specific commit with an accuracy of 83.57%. A simi-
lar process was suggested by [7]. A vulnerability-contributing commit can be deduced
from the security patch (e.g., by using the command ‘git blame’). In [7] tokenizing was
performed on vulnerability-contributing commits in java repositories and an attention-
based GRU was employed in order to classify the severity of the commit.

[14] selected 4 open-source C/C++ projects and filtered commits by using known
keywords that describe a security patch. Then, security researchers were employed to
manually label the commits as either commits that introduces a vulnerability, commits
that closes a vulnerability, or commits that are unrelated to vulnerabilities. Natural Lan-
guage Processing methods were used to create a deep learning model based on LSTM
and Convolutional Neural network, which led to a reported accuracy of 90%.

[8] also used the CVE Program to extract security patches from git repositories. This
was done to analyze and gain insights into the security patches. The authors investigated
the number of changes done to the code base, the maturity of the bugs, and the number
of bugs that were solved by the commits.

[11] extracted security patch commits from the CVE Program and verified that the
commits are security patches by manually inspecting 200 of them. Then, the authors
extracted the commit message only from GitHub (and did not use other features such
as added lines, removed lines, or date). Repositories that contained C/C++ code were
selected, and negative samples were acquired by taking all other commits from the same
repositories. The natural language processing model that was used to detect the security
patches was a hierarchical attention network with Gated Recurrent Units (GRU) [2] as
its layers. [11] reached an accuracy of 92%.

VCCFinder [9] extract security patches of C/C++ repositories similarly, but used
them to understand which is the commit that introduced the vulnerability. This paper

6 https://github.com/nitzanfarhi/SecurityPatchDetection
7 https://nitzanfarhi.github.io/datasets



Nitzan Farhi, Noam Koenigstein, and Yuval Shavitt

takes the first step in the direction we suggest by extracting limited meta-data: they use
present “fork count”, “star count”, “number of commits” and “programming language”
but disregard the entire history of these event data. A Support Vector Machine (SVM)
model was employed to detect the vulnerability introducing commits.

[10] used meta-data of Git logs to solve a different problem: detecting repositories
that are “engineered”, namely repositories that are not personal nor inactive. For this
they extracted Integration Frequency, Commit Frequency, Integrator Frequency, Com-
mitter Frequency, and Merge Frequency, and transformed it into a time series, which
was used to detect whether a repository is “engineered”. Similarly, [4] used GitHub’s
API to extract the number of Forks, open issues closed issues, commits, and max days
without commits to detect whether a project is under maintenance or unmaintained.

While there were some previous works that used the git behavioral meta-data, these
works were either limited in the amount of meta-data that was used or focused on a
different type of task. This work is the first solution that uses meta-data alone, which
enables a language-oblivious general solution.

Methods

Data Collection

As explained below, we collected data from multiple sources and processed them into
a single data-set that will be used by different models for training. A diagram of the
overall data collection process can be seen in Figure 1.

As mentioned before, Git is a collaborative version control system that allows track-
ing changes made to a repository. A commit is a change to a repository that includes the
text of the code that is being changed and a commit message describing the change in
natural language. To make the repository and the commits accessible to all developers,
they can be sent (pushed) to GitHub, a server that mirrors the local Git information.

GraphQL8 API allows us to iterate over the entire repository’s history and gather all
events. It must be noted that in this data collection, only data from “master”, “main”, or
activate branches can be collected because inactive branches are deleted and cannot be
extracted. The data was collected from the years 2015 to 2021 and features that were
collected are detailed in Table 2.

We also used GitHub’s GraphQL API to acquire static information about reposito-
ries, this information will allow us to create different models for different repositories
(for example by programming language) and also improve accuracy, as will be detailed
later. The static information includes properties of the repository such as the program-
ming language in use, the current size of the repository, and information about the owner
of the repository, e.g., if it is an individual or a company. The list of static features is
detailed in Table 1.

To acquire more data, we used “GH Archive”9, which records GitHub events and
can be easily accessed via SQL. This database contains events that cannot be acquired
via GraphQL since they are recorded in real-time, and branches that were deleted from

8 https://graphql.github.io/
9 https://www.gharchive.org/
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the repository cannot be retrieved. We acquired only the repositories that had CVEs and
Gathered all the events from “GraphQL” and “GH Archive”, making our dataset more
accurate and comprehensive to detect unlabeled vulnerabilities. Features extracted from
the GH Archive can also be seen in Table 2.

To gather a dataset of existing security patches, we used the largest existing database
of vulnerabilities - the CVE Program. A CVE is a unique identifier that identifies a
vulnerability, the CVE format is as follows: “CVE-2021-44228” where 2021 is the
current year the vulnerability was published and 44228 is a unique vulnerability ID for
that year.

The CVE Program publishes all CVEs in a comma-separated values (CSV) format.
Each entry in the CSV file is a CVE, and includes the CVE’s description and additional
links. We used the additional links to acquire security patches in the following way: the
additional links’ field can be separated into separate links, and if one of the links points
to a commit in GitHub, we gather the tuple 〈CVE-ID, commit-URL〉.

Finally, we cloned the repositories from GitHub to acquire a mapping between a
commit ID and its timestamp, the number of additions, deletions, and the number of
files that were changed. This allows us to have timestamped labeled commit events,
where a commit can be labeled as either positive - namely, a security patch or negative
- not a security patch. Since all other data we acquired is also dated, we overall have a
dataset of events with their date, time, and label.

Fig. 1: The overall data collection process.

Data Pre-processing

The main preprocessing method we used is Event-base Aggregation: Time elapsed be-
tween two events is not very meaningful, for example, it is insignificant if a fork was
done one hour after a commit or two. Therefore, we can discard the date and time (and
preserve only the temporal features that are one hot encoded). A configurable parame-
ter is the window size, which denotes the number of events before and after the security
patch commit that are concatenated together to create a window (or a vector) of fea-
tures. This window of features is one of many that will be fed into the model to train it,
as detailed in the next section.

Different from the time interval between events, other temporal features were found
to be informative such as hour, day of the week, and month. These features, along with
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Feature Type Explanation
isCompany Boolean Does the repository belong to a company or an independent person
isEmployee Boolean Is the repository owner an employee of a company
isHirable Boolean Is the repository owner can be hired
isSiteAdmin Boolean Is the repository owner site administrator
isSponsoringViewer Boolean Is the repository owner sponsored
isGitHubStar Boolean Is the repository owner a member of the GitHub star program
isCampusExpert Boolean Is the repository owner a member of the campus expert program
isDeveloperProgramMember Boolean Is the repository owner a member of the GitHub developer program
isVerified Boolean Is the repository owner verified by GitHub
isInOrganization Boolean Is the repository owner in an organization
createdAt Integer Year the repository was created (one-hot encoded)
diskUsage Integer Disk usage of the repository
hasIssuesEnabled Boolean Does the repository have issues enabled
hasWikiEnabled Boolean Does the repository have wiki enabled
isMirror Boolean Is the repository a mirror
isSecurityPolicyEnabled Boolean Is the security policy enabled in the repository
fundingLinks Integer Number of funding links in the repository
languages List List of programming languages used in the repository

Table 1: Repository’s static features that can be extracted via GraphQL.

Feature Description Location
Comment Event Comment on a commit was added GraphQL
Stargazers Event A stargazer was added to the repository GraphQL
Commit Additions Event lines were added to the repository (Integer) GraphQL
Commit Deletions Event lines were deleted from the repository (Integer) GraphQL
Subscribers Event A subscription was added to the repository GraphQL
Create Event A Git branch or tag was created GH Archive
Delete Event A Git branch or tag was deleted GH Archive
Issue Comment Event A comment on an issue was added GH Archive
Commit Comment Event A comment on a commit was added GH Archive
Pull Request Review Comment Event A comment on a pull request was added GH Archive
Member Event Membership on the repository changed GH Archive
Public Event A repository changed its viewing settings GH Archive
Push Event A commit was pushed to the repository Both
Fork Event The repository was forked Both
Release Event A new version of the repository was released Both
Issue Event A new issue was added Both
Watchers Event User marked the repository was watched Both
Pull Request Event A Pull request was created Both

Table 2: Repository’s features that can be extracted via GraphQL and GH Archive
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event types were encoded using one-hot encoding and fed to the LSTM units which
usually take numbers and not events. At this point, we gather for each repository all its
security patch commits. Additionally, in order to make the dataset balanced, we also
collected a random sample of non-security patch commits.

For each repository, we created a list of events with their date and time. Commit
events also have additional normalized integer features: the number of lines added to a
file, the number of lines deleted from a file, and the number of files modified. Further-
more, repositories that contained less than 100 events overall were discarded, since they
were mostly insufficient for extracting the windows that we required.

Models

When dealing with large amounts of data, it is important to leverage the temporal infor-
mation encapsulated in the data. A few types of models were examined for this cause.
LSTM is an architecture that had proven its efficiency for such tasks. LSTM is based
on Recurrent Neural Network (RNN) architecture, where performance decreases as a
larger number of time steps are fed into the network. However, LSTM can forget some
less important data, while preserving the more important parts of it. GRUs have an
architecture that is similar to LSTMs but with fewer parameters, which might be an
advantage for some learning tasks. Finally, Conv1D is a Convolutional Neural Net-
work (CNN) that convolutes 1-dimensional data, such as time series. This model can be
stacked to allow multi-level pattern recognition.

These model architectures accept their data as a series of vectors, each can be as-
sociated with many features. The following process, as can be seen in Figure 2 is em-
ployed to allow a time series to be given as input to LSTM, GRU, and Conv1D. For
each repository, in our data-set, we gathered for each label - security and non-security
patch commits, all the events that surround a commit, as a single input to the model.
For example, an 11-event window (composed of a certain event, 5 events before and 5
events after) can be used to classify the window as one that contains a security patch
(marked with a red column) or blue (as a window with non-security patches). As can
be seen in the figure, some events might contain more than one feature (one column is
composed of a few short lines). Window size is the number of events that are contained
in the window, each window size is constant, and windows are fed into the models one
by one.

Fig. 2: Demonstration of the sliding window method.
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Experimental Design

To validate the proposed methodology, the overall experimental design is as follows:
We randomly divided the repositories into training (90%) and test sets (10%). We fur-
ther employed k-fold cross-validation on the training data to choose hyper-parameters,
where k = 10 as follows: On each iteration, 10% of the repositories were kept as vali-
dation, which the model did not use for training.

The distribution that achieved the best validation accuracy was used for hyper-
tuning the parameters, to achieve even better validation accuracy. Finally, the obtained
model was used to classify the windows that surrounds a commits of the test set, and
performance metrics were calculated as described in Section Performance Evaluation.

As mentioned above, we experimented with several learning models for training:

– Conv1D - uses Conv1D layer, Max Pooling, and then fully connected layers (Ta-
ble 3).

– LSTM - LSTM model, which uses LSTM neural network layers (Table 4).
– GRU - GRU model, which uses GRU neural network layers (Table 5).

Model: Conv1D
Type Output Shape Param #
Conv1D (None, 198, 64) 8256
MaxPooling1d (None, 99, 64) 0
Flatten (None, 6336) 0
Dense (None, 256) 1622272
Dropout (None, 256) 0
Dense (None, 64) 16448
Dropout (None, 64) 0
Dense (None, 64) 4160
Dropout (None, 64) 0
Dense (None, 1) 65
Total params: 1,651,201

Table 3: Model summary for Conv1D.

The proposed models were implemented using the Keras [3] library with the Ten-
sorFlow backend [1] in Python. Training the model was done on a 64-bit Windows 10
Machine with Intel® Core™ i9-10940X CPU @ 3.30GHz with 16.0 GB RAM and
NVIDIA GeForce RTX 3080 GPU, where training the training set takes about 4 min-
utes, and a single prediction takes about 5 milliseconds. The optimizer used is SGD and
the selected batch size is 32 and the number of epochs is 50.

Performance Evaluation

To assess the performance of the trained models, we will define the metrics that were
used. When solving binary classification problems, accuracy, as defined in Equation 1,
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Model: LSTM
Type Output Shape Param #
LSTM (None, 199, 100) 66000
LSTM (None, 199, 50) 30200
LSTM (None, 199, 25) 7600
LSTM (None, 12) 1824
Dense (None, 1) 13
Total params: 105,637

Table 4: Model summary for LSTM.

Model: GRU
Type Output Shape Param #
GRU (None, 199, 100) 49800
GRU (None, 199, 50) 22800
GRU (None, 199, 25) 5775
GRU (None, 12) 1404
Dense (None, 1) 13
Total params: 79,792

Table 5: Model summary for GRU.

is usually used as the main evaluation criterion. Other important metrics are precision
(Equation 3), recall (Equation 2), and F1-Score (Equation 4), which is calculated from
precision and recall. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (1)

Recall =
TP

TP + FN
, (2)

Precision =
TP

TP + FP
, (3)

F1 = 2 · Precision ·Recall

Precision+Recall
, (4)

where TP , TN , FP , and FN are the count of true-positives, true-negatives, false-
positives, and false-negatives respectively. Finally, we also report the Receiver oper-
ating characteristic (ROC). The ROC is a curve that shows the trade-off between the
false-positive rate and the true-positive rate according to a selected threshold. The area
under the ROC curve (AUC) gives a numerical grade between 0 and 1 to the classifier,
where 1 is a perfect classification.

Results

As discussed in Section Experimental Design, a few models were evaluated to deter-
mine which is optimal for the task of classifying commits as security patches. We tested
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the three models with varied window sizes and found that for all window values Conv1D
was the best model. Figure 3 compares the three model accuracy for the optimal win-
dow size of 10. Conv1D is leading by 3 percentage points over the next model and
hence, in the rest of the experiments, we will focus on this model.

To discuss the rest of the results, we remind the reader that the window size deter-
mines the number of events that were gathered before and after the labeled event, e.g.,
if the window size is 5, we gathered overall 10 events: 5 before and 5 after the event).

In the experiments, we checked the metrics when using different window sizes,
which varied between 5 and 20. As can be seen in Figure 5, the optimal window size is
10 in both accuracy and F1-Score , when using the Conv1D model.

Table 6 shows a confusion matrix for the best case, namely where the window size
is set to 10 and the used model is Conv1D. In this case, the accuracy achieved was
83.93%, F1-Score was 84.14%, the precision was 0.7550, and the recall was 0.8769.

The number of false positives (FPs) is rather high, which results in rather low pre-
cision. We suspect that some of the FPs are unreported security patches that our model
identifies correctly. To validate this we manually examined 52 randomly selected FPs
and found (see also Section Case Study) that 16 of them contain security patches,
namely 30.8%. If we apply this to the confusion matrix of Table 6, we get an esti-
mate of 39 cases that are actually true positives (TPs). This results with a precision of
0.852. The accuracy also improves to 88.32%, and the F1-Score to 89.75%.

Figure 4 depicts the AUC for a window size of 10, which is 0.91. Since we already
discussed above that some of the FPs are actually TPs, the real AUC is higher.

Table 7 compares our results with previous works that attempted to detect security
patch commits. We noted that our paper is the only one that uses only behavioral git
operations, and the amount of repositories used is much larger.

Fig. 3: Comparison of the accuracy of different models.

Other Experiments

In this section, we report experiments that had not produced sufficiently positive results.

– Time-base Aggregation- As mentioned before, we used the Event-base Aggrega-
tionto build the horizon window. Another possibility is to use Time-base Aggrega-
tionby counting the events by type during time frames (Hour, 2 Hours, Day, etc...)
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Fig. 4: ROC curve for the best model.

Not Classified
as a Security Patch

Classified
as a Security Patch

Not Marked as
a Security Patch

373 (TN) 128 (FP)

Marked as
a Security Patch

28 (FN) 473 (TP)

Table 6: Confusion Matrix of the classification of patches in the test set (140 reposito-
ries).

Data Used Amount Of Repositories Accuracy Score
[13] Commit message and code difference 313 83.57%
[11] Commit messages 993 92.81%
Our Paper with original labels Git & GitHub behavioral data 1389 83.93%
Our Paper with estimated labels Git & GitHub behavioral data 1389 88.32 %

Table 7: Results Comparison.

Fig. 5: Conv1D model prediction accuracy and F1-Score as a function of window size.



Nitzan Farhi, Noam Koenigstein, and Yuval Shavitt

and summing them up to a single data row. This turned out to achieve a low accu-
racy rate since events can be sparse and result in many zero entries.
• Hours / Days - if Time-base Aggregationis used, the amount of hours/days

recorded before the labeled event is the window size.
• Resample - if Time-base Aggregationis used, we can aggregate all gathered

events differently (for example, all the events in several hours can be aggre-
gated into one vector)

– Extracting location of repositories from GitHub - Since GitHub provides an API
to the location of the owner we wanted to test if learning behavior by region or
country can improve the prediction. Unfortunately, this field is free text and does
not necessarily contain the actual location or is empty, which resulted in a high
variety of answers and proved to be not useful.

– Gathering a window before the actual security patch: this is an attempt to predict
a security patch in the future or as it occurs, as some events can indicate prepara-
tion for a security patch. However, the amount of data before the security patch is
not sufficient to make such a prediction, and data after is also needed to achieve
satisfactory results.

Case Study

As discussed above, some vulnerabilities are fixed in commits but are not reported as
vulnerabilities. In this case, our model will classify them as vulnerabilities, but they
will not be labeled as such (false-positive), we manually examined the false-positive
samples and checked for vulnerability-fixing changes in them, out of 52 false-positive
commits, we found 16 to contain security patches (30%). We will elaborate on two case
studies.

LibTIFF

LibTIFF is a library for processing the TIFF image format. A Commit10 fixed 2 heap-
based buffer overflow vulnerabilities and was detected by our model as a security patch,
although it was not assigned a CVE (but only an issue at Bugzilla11, which we do not
take labels from).

Wireshark

Wireshark is a network protocol analyzer that allows viewing network communication
at several protocol layers. A Commit12 fixed a denial of service attack by null pointer
dereference. This is clear from observing the code and also detected by our model but
the commit was not assigned a CVE.

10 https://GitHub.com/vadz/libtiff/commit/5ed9fea523316c2f5cec4d393e4d5d671c2dbc33
11 http://bugzilla.maptools.org/show bug.cgi?id=2633
12 https://GitHub.com/wireshark/wireshark/commit/ba179a7ef7e660d788cbaade65982ffc7249b91f
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Conclusion

In this work, we proposed a methodology to gather repositories’ behavioral meta-data
from 3 different sources. After merging the different sources into one time series data-
set, we used the CVE Program to label the data-set’s commits to security patches and
non-security patches. We introduced 3 types of time series models and discovered that
Conv1D achieved the best classification accuracy of 88.32%. We did not use natural
language processing tools, and thus our results are language insensitive (both program-
ming language and natural language).

Our results can be used to detect unreported security patches and warn the com-
munity to patch an open security problem. Our future research goal is to explore the
impact of the different features on the classification, this can be done by using more
interpretable models, comparing model accuracy on specific languages, etc.



Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI’16), pages 265–
283, 2016.

[2] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[3] François Chollet. keras. https://github.com/fchollet/keras, 2015.
[4] Jailton Coelho, Marco Tulio Valente, Luciana L Silva, and Emad Shihab. Iden-

tifying unmaintained projects in github. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
pages 1–10, 2018.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[6] Sameera Horawalavithana, Abhishek Bhattacharjee, Renhao Liu, Nazim Choud-
hury, Lawrence O. Hall, and Adriana Iamnitchi. Mentions of security vulnerabili-
ties on reddit, twitter and github. In IEEE/WIC/ACM International Conference on
Web Intelligence, pages 200–207, 2019.

[7] Triet Huynh Minh Le, David Hin, Roland Croft, and M Ali Babar. Deepcva:
Automated commit-level vulnerability assessment with deep multi-task learning.
In 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 717–729. IEEE, 2021.

[8] Frank Li and Vern Paxson. A large-scale empirical study of security patches.
In ACM SIGSAC Conference on Computer and Communications Security, pages
2201–2215, 2017.

[9] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. VCCFinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 426–437, 2015.

[10] Peter Pickerill, Heiko Joshua Jungen, Mirosław Ochodek, Michał Maćkowiak, and
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Abstract. Internet traffic classification’s research work, tackles the clas-

sification problem from different approaches and with different goals

(e.g., traffic type classification, applications and malicious/benign traf-

fic classification, etc.). Moreover, classical machine and deep learning

models have been shown to be applicable in the scope of internet traffic

classification. In this paper, we introduce OneShot, a novel approach for

internet traffic classification, by using our AKNN-based method, which

allows us to effectively identify new and existing classes without retrain-

ing the model, but instead only inspecting new classes once. Our basic

idea is simple, yet effective, and it is based on the idea, that if a sample’s

distance to an existing features is larger than a defined threshold, then

we classify it as a new class.

Keywords: Malware detection, Approximate Nearest Neighbors, internet traf-

fic classification, applications identification, security management,
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1 Introduction

Recently, there has been a massive change in the internet protocols, where new

network protocols such as QUIC [24], HTTP/2, HTTP/3, and new privacy-

concerned protocols such as TLS 1.3 and DoH [58] have been introduced. These

new privacy-preserving methods challenge traditional classification methods that

rely on Deep Packet Inspection (DPI), which leverages DNS and TLS/SSL Ser-

vice Name Indicator (SNI), to identify encrypted network traffic. Nowadays,

these fields are no longer usable, and advanced encrypted traffic flow classi-

fication algorithms are needed [50]. With the prevalence of encrypted traffic,

Internet Traffic Classification (ITC) research work, is needed more than ever

that tackles the classification problem from different approaches while achiev-

ing different goals (e.g., traffic type classification, applications classification, and

malicious/benign traffic classification).

Classical machine and deep learning models have been shown to be applicable

in the scope of internet traffic classification [8, 13, 18, 23, 26, 34, 38, 41, 47, 48, 52,

54,57]. Recently, a growing number of works used Natural Language Processing

(NLP) [41] techniques, such as transforming the flow into a language to use word

embedding [8,13,18,23,34], while others have converted the network flow into an

image to harness image processing’s techniques and equivalent Deep-Learning’s

architectures [26,38,47,48,52,54,57].

When examining, the general flow of a supervised ML pipeline, it is usually as

follows: collecting a wide range of labeled samples, extracting a set of features

from each sample, training a classification model on a subset of the samples

(commonly called the ”training set”), and then evaluating the model on the rest

of the samples (commonly called ”test set”), which were not part of the learning

phase.

Internet traffic is changing all the time, and new applications, malware, pro-

tocols, and services are frequently introduced. In order to make sure, that a
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internet traffic classification model will efficiently classify new types of samples

correctly, there are a few requirements [39]:

– Acquire a large amount of training data for the new class

– Add it to all the dataset, which was used to train the classifier initially

– Retrain the classifier on the combined data set

Note, that retraining ML’s/DL’s models every time they become obsolete is both

resource and time-consuming, especially when the application is complex, and

the evaluated datasets are large [25]. Therefore, there is a growing need to allow

classification models to detect and adapt to new classes dynamically, without re-

training [49]. Nearest neighbor search is one of the most well-known tools in many

research areas [11, 31]. In some cases, a generic nearest neighbor search under

a suitable distance or measure of similarity offers surprising quality improve-

ments [10]. To obtain efficient algorithms, one may use Approximate Nearest

Neighbors (ANN) [4] in which the returned neighbors may be an approximation

of the true nearest neighbors. Usually, this means that the answer to finding

the nearest neighbors to a query point is judged by the distance of the query

point to the set of its true nearest neighbors. Approximate KNN (AKNN) [3]

is a variation of KNN that aims to limit the training sample number that each

new test point is compared with, before returning a result.

1.1 Our Contribution

In this paper, we present an encrypted network traffic classification system (i.e.

OneShot) based on AKNN model, which enables the system to deal with new

classes. OneShot is a novel approach for internet traffic classification, that tackles

the disadvantage of retraining by using a vector search instead, which allows us

to effectively identify new and existing classes, by a simple yet effective method.

Our novel approach is based on the idea that if a sample distance to existing
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features, is higher than a defined threshold, we classify it as a new class. By

that, we omit the necessity to retrain the model if new classes or instances are

introduced, as the vector search process is dynamic. This way, our system can

extend itself using only a few samples from new data. Furthermore, we provide

real-time fast classification, since it is based on simple mathematical distance

calculation of approximate k’s nearest neighbors.

2 Related work

In recent years, deep-learning models have become the prominent method for net-

work traffic classification [30,36,56,57]. The deep-learning’s work span over mul-

tiple scopes and domains such as classification of the operating system, browser,

and application levels [40]; mobile app identification [53,54] and IoTs [43]. Some

works have converted the network flow into an image to harness image processing

techniques and equivalent Deep-Learning (DL) architectures [38,47,48,52,54,57],

while others used NLP [8] or graph neural network [42]. In the cyber domain,

works tackle the task of malware network traffic detection (benign, malicious)

and classification [2, 9, 14,15,21,30,33,38,44,51,55].

Although DL’s architectures started to replace the ML for traffic classifica-

tion, in [35] the authors presented a comparative experiment between ML’s/DL’s

algorithms that shows, in some cases, that ML algorithms such as RF [29] are

more than enough. It is essential for an effective classification system to support

continuous model updates in order to closely monitor the network traffic land-

scape. All the above works tackle the classification problem without discussing

the challenge of retraining the model. Retraining machine learning involves up-

dating models to accommodate the new knowledge, which is necessary to perform

well, however, most of the works use datasets with only a few classes, e.g. [12,52],

they use per-flow features, and do not consider scenarios where new applications

are progressively added to models. Therefore, the focus of these works, is only



OneShot - Adaptive Encrypted Traffic Classification By Retrieval 5

on the problem of creating the most accurate classifier given immutable data

for both the number of classes and the data for each class. These systems are

based on creating a new training set and training a new model from scratch.

It may, however, be inefficient and require high computation performance, to

update them with new classes’ classification.

The K-Nearest Neighbors (KNN) is one kind of lazy classification algorithm

without the process of classifier training. By learning-to-hash algorithms, the

KNN-based classification can be mapped to the hash table searching whose ex-

ecution time and memory cost are both acceptable. Qi et al., [45] presented

lightweight IoT traffic classification based on KNN [28]. Ma et al. [37] proposed

a method, based on the K-nearest neighbor (KNN) algorithm, which only needs

a small amount of data to train a model. Moreover, the authors also presented

a three-layer classification framework for encrypted network flows. Approximate

KNN (AKNN) [3] is a variation of KNN that aims to limit the training sample

number that each new test point is compared with, before returning a result.

Many efficient AKNN implementations have been developed with diverse ap-

proaches, such as dimension reduction [32], locality-sensitive hashing [27], and

compressed sensing [5], however, non of them uses the advantages of the AKNN

in the field of Internet traffic classification.

3 Methodology

Our goal is to find a solution, that provides accurate results for different types of

internet traffic classification challenges. In order to achieve this goal, we present

a unique, yet practical system, (i.e. OneShot), that solves two challenges.

First, it allows users and security software to accurately identify new classes,

without the need for retraining the model; second, it performs a fast real-time

classification with comparable results, by using AKNN query, which is based on

simple mathematical euclidean distance [22] calculation.
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The general idea behind our method is that if the distance between current

tested vector features, to the closest class is larger than a defined threshold, then

we add a new class. In our case, we use Euclidean distance metric, where we query

the elastic search for K closest samples, and select the class with maximum hits’

score.

In the training phase, each sample is transformed to vector with a label. The

One Shot model saves each training sample vector index and uses the label to

map it to a class. The prediction phase is responsible to label each test sample,

with the matching class by using the distance from the test sample, to get k

samples from the elastic and than using the label of the sample with the max

hits to decide on the label. The architecture’s proposed solution steps’ are as

follows, in the training part, each dataset comprises of traffic samples (e.g.,

PCAP files), where each sample represent a traffic flow. From each sample we

extract the required features (see Table 1), and normalize them. In order to build

our vector database (at this point, we only train and than for any sample that

we want to classify we use the distance to label it), we split the data to training

set (70%) and test set (30%), add the training set features’ to Elastic search

database [19], and then perform prediction for each test sample. The prediction

is done by ANN queries from the Elastic search database as seen in Figure 1.

Each ANN query, selects K closest samples, and from which we choose the class

with the max hits.
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Fig. 1: One Shot Work Flow

Table 1 presents our features’ vector, which contains two types of feature

groups: layer 3’s, and layer 4’s features.

4 Experimental Design

We conducted a set of experiments to evaluate the effectiveness of the ANN-

based approach for a set of classification tasks on encrypted traffic classification,

from multiple known public datasets. Specifically, we looked at both malicious

and benign traffic. Using the malicious traffic, we classified the malware family.

For the benign traffic, we evaluated OS classification, browser classification, and

the application’s classification.

The goal of our evaluation was first, to assess the decrease in our classifier’s

performance due to using a limited number of features, and packets while clas-
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Feature Slots in vector Description Comment

Bits per peak 3 Summary of bits of every "peak" from dst to src Layer 3

First packets sizes 30 First 30 packets sizes by direction of communication Layer 3

Beaconing 20 Sum of packets size where the src is more active than the dst Layer 4

Bandwidth 20 Min and max delta of TCP window size Layer 4

Statistics of packets sizes 4 Min, max, mean, STD of packet sizes Layer 3

Delta size between Pkts. 2 Mean and STD deltas of packet’s size Layer 3

Packets per second 2 Packets per second forward and backward Layer 3

Inter-arrival time 9 Min, max and mean of bidirectional, forward and backward Layer 4

Silence windows 1 Amount of silence windows longer than 1 second Layer 3

Amount of ACK packets 1 Bidirectional count of TCP packets which contain ACK flag Layer 4

Big requests 1 Count client to server messages > 200b Layer 4

Table 1: Feature sets

sifying new classes and comparing to a classical machine learning classifier (i.e.,

RF). Second, to show the robustness of our ANN-based classifier in classification

of new classes.

4.1 Datasets

We used two common datasets for our evaluations: BOA [16], MTA [17].

The BOA dataset was presented in [16] where the authors collected the data

over a period of more than two months in their lab, using a selenium web crawler

for browser traffic. The dataset contains applications’ traffic, such as YouTube

and Facebook, labeled as browser traffic, and Dropbox and TeamViewer, labeled

as non-browser traffic. The dataset contains more than 20,000 sessions. The

average duration of a session was 518 seconds, and on average, each session had

520 forward packets (the average forward traffic size was 261K bytes) and 637

backward packets (the average backward traffic size was 615K bytes). Almost
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all of the flows are TLS encrypted. Examples of works that used this dataset

include [16,46].

The MTA data source is a website (blog) [17] that includes many types of mal-

ware infection traffic for analysis. The website contains many types of malware,

such as ransomware and exploit kits. As of 2013 to date, the blog is updated daily

with relevant malware traffic, continuously adding more samples to the dataset.

Using Intrusion-Detection Systems (IDS) and Antivirus software, every binary

file in the PCAPs has been confirmed as malicious. Papers such as [6,30,33] have

used this dataset for malware detection.

5 Results

In this section we present our experimental results, which includes multiple ex-

periments on BOA and MTA datasets. For each dataset we first find the opti-

mal number of packets, then calculate the minimum features’ set. Moreover we

present the results of our model with new samples.

5.1 AKNN Classifier’s - the influence of the number of packets on

BOA dataset

In the first experiment, we wanted to check the influence of the number of packets

on our solution compare to RF. Therefore, we used the entire feature sets and

increased the number of packets from each flow until the accuracy of our solution

stopped improving. In figure 2, we show the results as a function of the number

of packets, which is the motivation to use only 10 packets.
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Fig. 2: One Shot Precision Plot Bar

In the BOA dataset, this occurred after 10 packets of a flow (on average around

5-6 KB). Table 2 presents the results of our AKNN model for the BOA dataset

with the optimal number of processed packets (10 packets).

Our Approach RF

Prec Rec F1 Prec Rec F1

win 0.96 0.95 0.95 1 0.99 0.99

OSX 0.92 0.97 0.94 0.92 0.99 0.95

Linux 0.98 0.98 0.98 1 0.98 0.99

CR 0.91 0.90 0.91 0.96 0.98 0.97

FF 0.91 0.91 0.91 1 0.99 0.99

IE 0.97 0.97 0.97 0.97 0.98 0.97

Safari 0.95 0.97 0.96 1 1 1

Table 2: AKNN model results per Class for BOA dataset using 10 packets
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From the results, we can see that RF performs slightly better than our algo-

rithm, and this is because we use a single classifier model (ANN), and RF is an

ensemble method [7].

5.2 BOA AKNN Classifier’s Minimal Selected Features Maximal

Performance

In this experiment we used the BOA dataset and we performed feature selection

to obtain the minimal number of features, which provide maximal performance

using the 10 packets from each sample. The results are depicted in Table 3. The

full features’ set is depicted in Table 1. As in previous section, we can see that

RF performs slightly better than our algorithm.

Prec. Rec. F1-SC RF Prec. RF Rec. RF F1 SC

Win 0.96 0.95 0.95 1 0.99 0.99

OSX 0.86 0.9 0.92 0.92 0.99 0.95

Linux 0.98 0.98 0.98 1 0.98 0.99

CR 0.9 0.9 0.9 0.96 0.98 0.97

FF 0.91 0.91 0.91 1 0.99 0.99

IE 0.97 0.98 0.97 0.97 0.98 0.97

Safari 0.95 0.95 0.95 1 1 1

Table 3: AKNN model results per Class for BOA dataset using 10 packets with

minimal features

5.3 MTA AKNN Classifier’s Maximal Performance

In this section, similar to the first experiment, we wanted to check the influence

of the number of packets on our solution. Therefore, we used the entire feature

sets and increased the number of packets from each flow until the accuracy of our
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solution stopped improving. We present the optimal classifier results, using 98

packets (on average around 50-60 KB) for MTA dataset in table 5. As in earlier

sections, we see that RF as an ensemble method slightly outperforms our ANN

classifer. Notice, that MTA consist of main class, which includes InfoStealer and

Dropper, and the rest are secondary classes.

Pr Rec. F1-SC RF Pr RF Rec. RF F1-SC

Istealer 0.95 0.96 0.95 0.96 0.97 0.96

Dropper 0.93 0.92 0.92 0.95 0.95 0.95

ACC 0.96 0.97

Dridex 0.84 0.79 0.81 0.86 0.85 0.55

Emotet 0.92 0.93 0.92 0.93 0.94 0.93

Hancitor 0.96 0.96 0.96 0.96 0.96 0.96

Icedid 0.85 0.93 0.84 0.87 0.92 0.87

Qakbot 0.92 0.94 0.93 0.92 0.94 0.93

Valak 0.92 0.94 0.93 0.92 0.94 0.94

zloader 0.86 0.88 0.87 0.87 0.88 0.87

ACC 0.93 0.95

Table 5: AKNN model results per Class for MTA dataset using 98 packets

5.4 MTA AKNN Classifier’s Minimal Selected Features Maximal

Performance

In this section, we performed feature selection on MTA dataset, to obtain the

minimal number of features, which provide maximal performance using 98 pack-

ets. The results are depicted in table 6. The list of features is depicted in table

7.
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Class Pr Rec. F1-SC RF Pr RF Rec. RF F1-SC

Infostealer 0.95 0.96 0.95 0.95 0.97 0.95

Dropper 0.93 0.92 0.92 0.94 0.94 0.94

Accuracy 0.96

Dridex 0.84 0.79 0.81 0.85 0.82 0.82

Emotet 0.92 0.93 0.93 0.93 0.93 0.93

Hancitor 0.95 0.95 0.95 0.95 0.95 0.95

Icedid 0.85 0.92 0.84 0.86 0.92 0.86

Qakbot 0.92 0.93 0.93 0.93 0.93 0.93

Valak 0.92 0.93 0.93 0.92 0.93 0.93

zloader 0.86 0.88 0.87 0.87 0.88 0.87

Accuracy 0.93

Table 6: AKNN model minimal features’ list results per Class for MTA dataset

using 98 packets

Feature Description

window delta 11 11th index of the max difference between packet’s size sent/rcv. in the same direction

wavelet 9 9th coefficient on FFT of the packet sizes

ps 29 Packet’s size of the 29th packet in the same direction

ps 6 Packet’s size of the 6th packet our of first 30 packets in the same direction

wavelet 12 Using the 12th coefficient on FFT of the packet sizes in a 10 seconds window

window delta 10 10th index of the max difference between packet’s size sent/received

wavelet 18 Using the 18th coefficient on FFT of the packet sizes in a 10 seconds window

bidirectional mean piat ms average arrival time between packets in both directions

wavelet 5 Using the 5th coefficient on FFT of the packet sizes in a 10 seconds window

ps 4 Packet’s size of the 4th packet our of first 30 packets in the same direction

Table 7: Feature selection for MTA
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5.5 MTA AKNN One-Shot New Classes Classification

So far we tested our approach on known classes. In the following section, we

present the results of our approach in the case of new classes of malware (i.e.

Cobalt Strike), first seen by the model. The result is shown in table 8. From the

results, we can see there is a decrease in the accuracy when testing samples from

new classes, however, all the classes are classified accurately.

F1-Score (before adding new samples) F1-Score

Beacon 0.95

Infostealer 0.97 0.96

Dropper 0.92 0.91

Cobalt Strike 0.95

Dridex 0.81 0.79

Emotet 0.93 0.93

Hancitor 0.97 0.97

Icedid 0.84 0.82

Qakbot 0.93 0.93

Valak 0.93 0.93

zloader 0.87 0.84

Table 8: AKNN model for MTA’s results per Class for Cobalt Strike

6 Discussions and Future Perspectives

Encrypted traffic classification is an invaluable part of cybersecurity, since net-

work traffic encryption has become prevalent. With the growing usage of QUIC,

it will not be possible to use Server Name Identification (SNI) field to identify

traffic due to privacy-preserving methods. Therefore, this enhances the need for

statistic-based network classification based on OSI model’s network levels non-

encrypted layers. In this paper, we have shown how our approach can achieve
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the following goals, detect malware activity on encrypted network traffic, and

classifying the malware type and name, create a simple model which can be

maintained easily, detect unknown traffic, and classify it as new classes, create

an alternative solution for retraining. Our plans for future work include:

1. Features selection for behavioral features needed for malware classification

2. Features selection for behavioral features needed for application classification

3. Features selection for behavioral features needed for application type classi-

fication (chat, VoIP [20], data download, VOD [1], etc.)

4. Understanding the impact of the features order, on the classification’s results.

5. Optimize runtime performance.

6. Use OneShot ’s classification on additional datasets

7. Benchmark our solution VS additional ML’s/DL’s methods
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ABSTRACT

Disentangling complex data to its latent factors of variation is a fundamental task
in representation learning. Existing work on sequential disentanglement mostly
provides two factor representations, i.e., it separates the data to time-varying and
time-invariant factors. In contrast, we consider multifactor disentanglement in
which multiple (more than two) semantic disentangled components are generated.
Key to our approach is a strong inductive bias where we assume that the underlying
dynamics can be represented linearly in the latent space. Under this assumption, it
becomes natural to exploit the recently introduced Koopman autoencoder models.
However, disentangled representations are not guaranteed in Koopman approaches,
and thus we propose a novel spectral loss term which leads to structured Koopman
matrices and disentanglement. Overall, we propose a simple and easy to code new
deep model that is fully unsupervised and it supports multifactor disentanglement.
We showcase new disentangling abilities such as swapping of individual static
factors between characters, and an incremental swap of disentangled factors from
the source to the target. Moreover, we evaluate our method extensively on two
factor standard benchmark tasks where we significantly improve over competing
unsupervised approaches, and we perform competitively in comparison to weakly-
and self-supervised state-of-the-art approaches. The code is available at GitHub.

1 INTRODUCTION

Representation learning deals with the study of encoding complex and typically high-dimensional
data in a meaningful way for various downstream tasks (Goodfellow et al., 2016). Deciding whether
a certain representation is better than others is often task- and domain-dependent. However, disen-
tangling data to its underlying explanatory factors is viewed by many as a fundamental challenge in
representation learning that may lead to preferred encodings (Bengio et al., 2013). Recently, several
works considered two factor disentanglement of sequential data in which time-varying features and
time-invariant features are encoded in two separate sub-spaces. In this work, we contribute to the
latter line of work by proposing a simple and efficient unsupervised deep learning model that performs
multifactor disentanglement of sequential data. Namely, our method disentangles sequential data to
more than two semantic components.

One of the main challenges in disentanglement learning is the limited access to labeled samples,
particularly in real-world scenarios. Thus, prior work on sequential disentanglement focused on
unsupervised models which uncover the time-varying and time-invariant features with no available
labels (Hsu et al., 2017; Li & Mandt, 2018). Specifically, two feature vectors are produced, represent-
ing the dynamic and static components in the data, e.g., the motion of a character and its identity,
respectively. Subsequent works introduce two factor self-supervised models which incorporate
supervisory signals and a mutual information loss (Zhu et al., 2020) or data augmentation and a
contrastive penalty (Bai et al., 2021), and thus improve the disentanglement abilities of prior baseline
models. Yamada et al. (2020) proposed a probabilistic model with a ladder module, allowing certain
multifactor disentanglement capabilities. Still, to the best of our knowledge, the majority of existing
work do not explore the problem of unsupervised multifactor sequential disentanglement.

∗joint first authors
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In the case of static images, multiple disentanglement approaches have been proposed (Kulkarni
et al., 2015; Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; 2016; Burgess et al., 2018;
Kumar et al., 2017; Bouchacourt et al., 2018). In addition, there are several approaches that support
disentanglement of the image to multiple distinct factors. For instance, Li et al. (2020) design an
architecture which learns the shape, pose, texture and background of natural images, allowing to
generate new images based on combinations of disentangled factors. In (Xiang et al., 2021), the
authors introduce a weakly-supervised framework where N factors can be disentangled, given N − 1
labels. In comparison, our approach is fully unsupervised, deals with sequential data and the number
of distinct components is determined by a hyperparameter.

Recently, Locatello et al. (2019) showed that unsupervised disentanglement is impossible without
inductive biases on models and datasets. While exploiting the underlying temporal structure had
been shown as a strong inductive bias in existing disentanglement approaches, we argue in this work
that a stronger assumption should be considered. Specifically, based on Koopman theory (Koopman,
1931) and practice (Budišić et al., 2012; Brunton et al., 2021), we assume that there exists a learnable
representation where the dynamics of input sequences becomes linear. Namely, the temporal change
between subsequent latent feature vectors can be encoded with a matrix that approximates the
Koopman operator. Indeed, the same assumption was shown to be effective in challenging scenarios
such as fluid flows (Rowley et al., 2009) as well as other application domains (Rustamov et al., 2013;
Kutz et al., 2016). However, it has been barely explored in the context of disentangled representations.

In this paper, we design an autoencoder network (Hinton & Zemel, 1993) that is similar to previous
Koopman methods (Takeishi et al., 2017; Morton et al., 2018), and which facilitates the learning of
linear temporal representations. However, while the dynamics is encoded in a Koopman operator, dis-
entanglement is not guaranteed. To promote disentanglement, we make the following key observation:
eigenvectors of the approximate Koopman operator represent time-invariant and time-variant factors.
Motivated by this understanding, we propose a novel spectral penalty term which splits the operator’s
spectrum to separate and clearly-defined sets of static and dynamic eigenvectors. Importantly, our
framework naturally supports multifactor disentanglement: every eigenvector represents a unique
disentangled factor, and it is considered static or dynamic based on its eigenvalue.

Contributions. Our main contributions can be summarized as follows.

1. We introduce a strong inductive bias for disentanglement tasks, namely, the dynamics of
input sequences can be encapsulated in a matrix. This assumption is backed by the rich
Koopman theory and practice.

2. We propose a new unsupervised Koopman autoencoder learning model with a novel spectral
penalty on the eigenvalues of the Koopman operator. Our approach allows straightforward
multifactor disentanglement via the eigendecomposition of the Koopman operator.

3. We extensively evaluate our method on new multifactor disentanglement tasks, and on several
two factor benchmark tasks, and we compare our work to state-of-the-art unsupervised and
weakly-supervised techniques. The results show that our approach outperforms baseline
methods in various quantitative metrics and computational resources aspects.

2 RELATED WORK

Sequential Disentanglement. Most existing work on sequential disentanglement is based on the
dynamical variational autoencoder (VAE) architecture (Girin et al., 2020). Initial attempts focused on
probabilistic models that separate between static and dynamic factors, where in (Hsu et al., 2017) the
joint distribution is conditioned on the mean, and in (Li & Mandt, 2018) conditioning is defined on
past features. Subsequent works proposed self-supervised approaches that depend on auxiliary tasks
and supervisory signals (Zhu et al., 2020), or on additional data and contrastive penalty terms (Bai
et al., 2021). In Han et al. (2021a), the authors replace the common Kullback–Leibler divergence with
the Wasserstein distance between distributions. Some approaches tailored to video disentanglement
use generative adversarial network (GAN) architectures (Villegas et al., 2017; Tulyakov et al., 2018)
and a recurrent model with adversarial loss (Denton & Birodkar, 2017). Finally, Yamada et al. (2020)
proposed a variational autoencoder model including a ladder module (Zhao et al., 2017), which
allows to disentangle multiple factors. The authors demonstrated qualitative results of multifactor
latent traversal between various two static features and three dynamic features on the Sprites dataset.

2



Published as a conference paper at ICLR 2023

χenc χdec

X Z

Zp

Zf

Z, Z̃

Xrec

X̃fC

Leig

Lrec

Lpred

Koopman Module

Figure 1: Our architecture is based on a Koopman autoencoder network which includes encoder
χenc, decoder χdec, and a Koopman module that computes the Koopman operator C via least squares
solves. We augment this model with a novel spectral penalty term Leig which facilitates the learning
of spectrally structured C matrices, and thus supporting multifactor disentanglement by construction.

Dynamics Learning. Over the past few years, an increasing interest was geared towards learning
and representing dynamical systems using deep learning techniques. Two factor disentanglement
methods based on Kalman filter (Fraccaro et al., 2017), and state-space models (Miladinović et al.,
2019) focus on ordinary differential equation systems. Other methods utilize the mutual information
between past and future to estimate predictive information Clark et al. (2019); Bai et al. (2020).
Mostly related to our approach are Koopman autoencoders (Lusch et al., 2018; Yeung et al., 2019;
Otto & Rowley, 2019; Li et al., 2019; Azencot et al., 2020; Han et al., 2021b), related to classical
learning methods, e.g., Azencot et al. (2019); Cohen et al. (2021). Specifically, in (Takeishi et al.,
2017; Morton et al., 2018; Iwata & Kawahara, 2020) the Koopman operator is learned via a least
squares solve per batch, allowing to train a single neural model on multiple initial conditions. We
base our architecture on the latter works, and we augment it with a novel spectral loss term which
promotes disentanglement. Recently, an intricate model for video disentanglement was proposed
in (Comas et al., 2021). While the authors employ Koopman techniques in that work, it is only
partially related to our work since they explicitly model pose and appearance components, whereas
our approach can model an arbitrary number of disentangled factors. In addition, their architecture
is based on the attention network (Bahdanau et al., 2014), where the Koopman module is mostly
related to prediction. In comparison, in our work the Koopman module is directly responsible for
unsupervised disentanglement of sequential data.

Koopman Spectral Analysis. Our method is based on learning Koopman operators with structured
spectra. Spectral analysis of Koopman operators is an active research topic (Mezić, 2013; Arbabi
& Mezic, 2017; Mezic, 2017; Das & Giannakis, 2019; Naiman & Azencot, 2023). We explore
Koopman eigenfunctions associated with the eigenvalue 1. These eigenfunctions are related to global
stability (Mauroy & Mezić, 2016), and to orbits of the system (Mauroy & Mezić, 2013; Azencot et al.,
2013; 2014). Other attempts focused on computing eigenfunctions for a known spectrum (Mohr &
Mezić, 2014). Recently, pruning weights of neural networks using eigenfunctions with eigenvalue 1
was introduced in (Redman et al., 2021). However, to the best of our knowledge, our work is among
a few to propose a deep learning model for generating spectrally-structured Koopman operators.

3 KOOPMAN AUTOENCODER MODELS

We recall the Koopman autoencoder (KAE) architecture introduced in (Takeishi et al., 2017) as it is
the basis of our model. The KAE model consists of an encoder and decoder modules, similarly to
standard autoencoders, and in between, there is a Koopman module. The general idea behind this
architecture is that the encoder and decoder are responsible to generate effective representations and
their reconstructions, driven by the Koopman layer which penalizes for nonlinear encodings.

We denote by X ∈ Rb×(t+1)×m a batch of sequence data {xij} ⊂ Rm where i ∈ {1, . . . , b} and
j ∈ {1, . . . , t+1} represent the batch sample and time indices, respectively. The tensor X is encoded
to its latent representation Z ∈ Rb×(t+1)×k via Z = χenc(X). The Koopman layer splits the latent
variables to past Zp and future Zf observations, and then, it finds the best linear map C such that
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Zp ·C ≈ Zf . Formally, Zp = (zij) ∈ Rb·t×k for j ∈ {1, . . . , t} and any i, and Zf = (zij) ∈ Rb·t×k

for j ∈ {2, . . . , t+1} and any i, i.e., Zp holds the first t latent variables per sample, and Zf holds the
last t variables. Then, C = argminC̃ |Zp ·C̃−Zf |2F = Z+

p Zf , where A+ denotes the pseudo-inverse
of the matrix A. Importantly, the matrix C is computed per Z during both training and inference,
and in particular, C is not parameterized by network weights. Additionally, the pseudo-inverse
computation supports backpropagation, and thus it can be used during training (Ionescu et al., 2015).
Lastly, the latent samples are reconstructed with the decoder Xrec = χdec(Z).

The above architecture employs reconstruction and prediction loss terms: the reconstruction loss
promotes an autoencoder learning, and the prediction loss aims to capture the dynamics in C. We use
the notation LMSE(X,Y ) = 1

b·t
∑

i,j |Y (i, j)−X(i, j)|22 for the average distance between tensors
X,Y ∈ Rb×t×k for i ∈ {1, . . . , b} and j ∈ {1, . . . , t}. Then, the losses are given by

Lrec(Xrec, X) = LMSE(Xrec, X) , (1)

Lpred(Z̃f , Zf , X̃f , Xf ) = LMSE(Z̃f , Zf ) + LMSE(X̃f , Xf ) , (2)

where Z̃f := Zp · C, X̃f := χdec(Z̃f ), and Xf are the inputs corresponding to Zf latent variables.
The network loss is taken to be L = λrecLrec+λpredLpred, where λrec, λpred ∈ R+ balance between
the reconstruction and prediction contributions. We show in Fig. 1 an illustration of the Koopman
autoencoder architecture using the notations above.

4 MULTIFACTOR DISENTANGLING KOOPMAN AUTOENCODERS

How disentanglement can be achieved given the Koopman autoencoder architecture? For comparison,
other disentanglement approaches typically represent the disentangled factors explicitly. In contrast
the batch dynamics in KAE models is encoded in the approximate Koopman operator matrix C, where
C propagates latent variables through time while carrying the static as well as dynamic information.
Thus, the time-varying and time-invariant factors are still entangled in the Koopman matrix. We now
show that KAE theoretically enables disentanglement under the following analysis.

Koopman disentanglement. In general, one of the key advantages of Koopman theory and practice
is the linearity of the Koopman operator, allowing to exploit tools from linear analysis. Specifically,
our approach depends heavily on the spectral analysis of the Koopman operator (Mezić, 2005). In
what follows, we perform our analysis directly on C, and we refer the reader to App. A and the
references therein for a detailed treatment of the full Koopman operator. The eigendecomposition of
C consists of a set of left eigenvectors {ϕi ∈ Ck} and a set of eigenvalues {λi ∈ C} such that

ϕT
i C = λiϕ

T
i , i = 1, . . . , k . (3)

The eigenvectors can be viewed as approximate Koopman eigenfunctions, and thus the eigenvectors
hold fundamental information related to the underlying dynamics. For instance, the eigenvectors
describe the temporal change in latent variables. Formally,

zTj C =

k∑
i=1

⟨zTj , ϕT
i ⟩ϕT

i C =
∑
i

z̄ijλiϕ
T
i ≈ zTj+1 , j = 1, . . . , t , (4)

where z̄ij := ⟨zTj , ϕT
i ⟩ is the projection of zTj on the eigenvector ϕT

i . The approximation follows from
C being the best (and not necessarily exact) linear fit between past and future features. Moreover, it
follows that predicting step j + r from j is achieved simply by applying powers of the Koopman
matrix on zTj , i.e., zTj C

r =
∑

i z̄
i
jλ

r
iϕ

T
i ≈ zTj+r.

Our approach to multifactor disentanglement is based on the following key observation: eigenvectors
of the matrix C whose eigenvalue is 1 represent time-invariant factors. For instance, assume C has a
single eigenvector ϕ1 with λ1 = 1 and λi ̸= 1 for i ̸= 1, then it follows from Eq. 4 that

zTj C
r = z̄1jϕ

T
1 +

k∑
i=2

z̄ijλ
r
iϕ

T
i . (5)

Essentially, the contribution of ϕ1 is not affected by the dynamics and it remains constant, and thus
the first addend remains constant throughout time, and it is related to static features of the dynamics.
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In contrast, every element in the sum in Eq. 5 is scaled by its respective λr
i , and thus the sum changes

throughout time, and these eigenvectors are related to dynamic features. We conclude that the KAE
architecture virtually allows disentanglement via eigendecomposition of the Koopman matrix where
the static factors are eigenvectors with eigenvalue 1, and the rest are dynamic factors.

Multifactor Koopman Disentanglement. Unfortunately, the vanilla KAE model is not suitable
for disentanglement as the learned Koopman matrices can generally have arbitrary spectra, with
multiple static factors or no static components at all. Moreover, KAE does not allow to explicitly
balance the number of static vs. dynamic factors. To alleviate the shortcomings of KAE, we propose
to augment the Koopman autoencoder with a spectral loss term Leig which explicitly manipulates
the structure of the Koopman spectrum, and its separation to static and dynamic factors. Formally,

real

im
ag

Lstat =
1

ks

ks∑
i

|λi − (1 + ı0)|2 , (6)

Ldyn =
1

kd

kd∑
i

ξ(|λi|, ϵ) , (7)

Leig = Lstat + Ldyn , (8)

where ks and kd represent the number of static and dynamic components, respectively, and thus
k = ks + kd. The term Lstat measures the average distance of every static eigenvalue from the
complex value 1. The role of Ldyn is to encourage separation between the static and dynamic
factors. In practice, this is achieved with a threshold function ξ which takes the modulus of λi and a
user parameter ϵ ∈ (0, 1), and it returns |λi| if |λi| > ϵ, and zero otherwise. Thus, Ldyn penalizes
dynamic factors whose modulus is outside an ϵ-ball. The inset figure shows an example spectrum we
obtain using our loss penalties, where blue and red denote static and dynamic factors, respectively.

Method Summary. Given a batch X ∈ Rb×t×m, we feed it to the encoder. Our encoder is similar
to the one used in C-DSVAE (Bai et al., 2021) having five convolutional layers, followed by a uni-
directional LSTM module. The output of the encoder is denoted by Z ∈ Rb×t×k, and it is passed to
the Koopman module. Then, Z is split to past Zp and future Zf observations, allowing to compute the
approximate Koopman operator via C = Z+

p Zf . In addition, we compute Z̃f := Zp · C which will
be used to compute Lpred. After the Koopman module, we apply the decoder whose structure mimics
the encoder but in reverse having an LSTM component and de-convolutional layers. Additional
details on the encoder and decoder are detailed in Tab. 5. We decode Z to obtain the reconstructed
signal Xrec, and we decode Z̃f to approximate the future recovered signals X̃f . The total loss is given
by L = λrecLrec + λpredLpred + λeigLeig, where the balance weights λrec, λpred and λeig scale the
loss penalty terms and the exact values are given in Tab. 6. To compute Leig, we identify the static
and dynamic subspaces. This is done by simply sorting the eigenvalues based on their modulus, and
taking the last ks eigenvectors, whereas the rest kd are dynamic factors. Identifying multiple factors
is more involved and can be obtained by manual inspection or via an automatic procedure using a
pre-trained classifier, see App. B.5.

Multifactor Static and Dynamic Swap. Similar to previous methods our approach allows to swap
between e.g., the static factors of two different input samples. In addition, our framework naturally
supports multifactor swap as we describe next. For simplicity, we first consider the swap of a single
factor (e.g., hair color in Sprites (Reed et al., 2015)) for the given latent codes of two samples, zj(u)
and zj(v), j = 1, . . . , t + 1. Denote by ϕ1 the eigenvector of the factor we wish to swap, then a
single swap is obtained by switching the Koopman projection coefficients of ϕ1, i.e.,

ẑj(u) = z̄1j (v)ϕ1 +

k∑
i=2

z̄ij(u)ϕi , ẑj(v) = z̄1j (u)ϕ1 +

k∑
i=2

z̄ij(v)ϕi , (9)

where ẑj(u) denotes the new code of zj(u) using the swapped factor from the v sample, and similarly
for ẑj(v). If several factors are to be swapped, then ẑj(u) =

∑
i∈I z̄

i
j(v)ϕi+

∑
i∈Ic z̄ij(u)ϕi, where I

denotes the set of eigenvector indices we swap, and Ic is the complement set. The above formulation
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Figure 2: In the factorial swap experiment we modify individual static factors of the source character
to match those of the target. The top row shows the gradual change of the hair, skin, and top colors.

is equivalent to the simpler tensor notation Z̄s[u, :, Ic] = Z̄[u, :, Ic] and Z̄s[u, :, I] = Z̄[v, :, I],
where Z̄ ∈ Cn×t×k is the Koopman projection coefficients of a batch with n samples, and Z̄s

represents the swapped coefficients. Thus, the swapped latent code is given by Ẑ = Z̄s · Φ, where
Φ = (ϕi) is the matrix of eigenvectors organized in columns. A more detailed description of the
swaps and how to obtain the disentangled subspaces representations is provided in App. B.

5 RESULTS

We evaluate our model on several two- and multi-factor disentanglement tasks. For every dataset, we
train our model, and for evaluation, we additionally train a vanilla classifier on the label sequences. In
all experiments, we apply our model on mini-batches, extracting the latent codes Z and the Koopman
matrix C. Disentanglement tests use the eigendecomposition of C, where we identify the subspaces
corresponding to the dynamic and static factors, denoted by Idyn and Istat, respectively. We may
label other subspaces such as Ih to note they correspond to e.g., hair color change in Sprites. To
identify the subspace corresponding to a specific factor we perform manual or automatic approaches
(App. B). Importantly, subspace’s dimension of a single factor may be larger than one. We provide
further details regarding the network architectures, hyperparameters, datasets, data pre-processing,
and a comparison of computational resources (App. B). Additional results are provided in App. C.

5.1 MULTIFACTOR DISENTANGLEMENT

We will demonstrate that our method disentangles sequential data to multiple distinct factors, and
thus it extends the toolbox introduced in competitive sequential disentanglement approaches which
only supports two factor disentanglement. Specifically, while prior techniques separate to static and
dynamic factors, we show that our model identifies several semantic static factors, allowing a finer
control over the factored items for downstream tasks. We perform qualitative and quantitative tasks
on the Sprites (Reed et al., 2015) and MUG (Aifanti et al., 2010) datasets to show those advantages.

Factorial swap. This experiment demonstrates that our method is capable of swapping individual
content components between sprite characters. We extract a batch with 32 samples, and we identify
by manual inspection the subspaces responsible for hair color, skin color, and top color, labeled by
Ih, Is, It. We select two samples from the test batch, shown as the source and target in Fig. 2. To swap
individual static factors between the source and target, we follow Eq. 9. Specifically, we gradually
change the static features of the source to be those of the target. For example, the top row in Fig. 2
shows the source being modified to have the hair color, followed by skin color, and then top color of
the target, from left to right. In practice, this is achieved via setting Z̄h = Z̄hs = Z̄hst = Z̄src and
assigning Z̄h[:, Ih] = Z̄tgt[:, Ih], Z̄hs[:, Ihs] = Z̄tgt[:, Ihs], and Z̄hst[:, Ihst] = Z̄tgt[:, Ihst],
where Z̄src, Z̄tgt ∈ C8×40 are the Koopman projection values of the source and target, respectively.
The set Ihs := Ih ∪ Is, and similarly for Ihst. The tensor Z̄h represents the new character obtained
by borrowing the hair color of the target, and similarly for Z̄hs and Z̄hst. In total, we demonstrate in
Fig. 2 the changes: h→s→t (top), h→t→s (middle), and s→h→t (bottom). We additionally show
in Fig. 12 an example of individual swaps including all possible combinations. Our results display
good multifactor separation and transfer of individual static factors between different characters.
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Figure 3: We show the t-SNE plot of the 4D Koopman static subspace which encodes the skin and
hair colors. The embedding perfectly clusters all (skin, hair) color combinations.

To quantitatively assess the performance of our approach in the factorial swap task, we consider the
following experiment. We iterate over test batches of size 256, and for every batch we automatically
identify its hair color and skin color subspaces, Ih, Is. Then, we compute a random sampling of Z
denoted by J , and separately swap the hair color and the skin color. In practice, this boils down
to Z̄h = Z̄s = Z̄ and setting Z̄h[:, :, Ih] = Z̄[J, :, Ih] and similarly, Z̄s[:, :, Is] = Z̄[J, :, Is].
The new latent codes are reconstructed and fed to the pre-trained classifier, and we compare the
predicted labels to the true labels of Z[J ]. The results are reported in Tab. 1 where we list the
accuracy measures for every factor. For most non-swapped factors, we obtain an accuracy score
close to random guess, e.g., the skin accuracy in the hair swap is 16.25% which is very close to 1/6.
Moreover, the swapped factors yield high accuracy scores marked in bold, validating the successful
swap of individual factors.

Table 1: Accuracy measures of factorial swap experiments.
Test action skin top pants hair

hair swap 10.51% 16.25% 16.33% 35.51% 90.59%
skin swap 10.55% 73.01% 16.29% 30.55% 17.70%

Latent Embedding. We now explore the effect of our model on the latent representation of samples.
To this end, we consider a batch X of sprites where the motion, skin and hair colors are arbitrary,
and the top and pants colors are fixed, for a total of 324 examples. Following the above experiment,
we automatically identify the subspaces responsible for changing the hair and skin color, Ih, Is. To
explore the distribution of the latent code, we visualize the Koopman projection coefficients of the
4-dimensional subspace Ihs = Ih ∪ Is given by Z̄[:, :, Ihs] ∈ C324×8×4. We plot in Fig. 3 the
2D embedding obtained using t-SNE (Van der Maaten & Hinton, 2008). To distinguish between
skin and hair labels, we paint the face of every 2D point based on its true hair label, and we paint
the point’s edge with the true skin color. The plot resembles a grid-like pattern, showing a perfect
separation to all 36 unique combinations of (skin, hair) colors. We conclude that the Koopman
subspace Ihs indeed disentangles the samples based on either their skin or hair.

Incremental Swap. In this test we explore multifactor features of time-varying Koopman subspaces
on the MUG dataset. Given a source image u, we gradually modify its dynamic factors to be those of
the target v. In practice, we compute Z̄[u, :, Iq] = Z̄[v, :, Iq], where Iq ⊂ Idyn is an index set from
Idyn such that q ∈ {1, 2, 3} and I1 ⊂ I2 ⊂ I3 ⊂ Idyn. Specifically, |I1| = 4, |I2| = 6, |I3| = 32.
Fig. 4 shows the incremental swap results of two examples changing from disgust to happiness (left),
and happiness to anger (right). The three rows below the source row are the reconstructions of the
gradual swap denoted by X̃(Iq) := χdec(Z̄[u, :, Iq] · Φ). Our results demonstrate in both cases a
non-trivial gradual change from the source expression to the target, as more dynamic features are
swapped. For instance, the left source is mapped to a smiling character over all time samples in
X̃(I2), and then it is fixed to better match the happiness trajectory source in X̃(I3).
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Figure 4: Our method allows to swap the dynamic features incrementally, and thus it achieves a
relatively smooth transition between the source and target expressions.

5.2 TWO FACTOR DISENTANGLEMENT OF IMAGE DATA

We perform two factor disentanglement on Sprites and MUG datasets, and we compare with state-of-
the-art methods. Evaluation is performed by fixing the time-varying features of a test batch while
randomly sampling its time-invariant features. Then, a pre-trained classifier generates predicted labels
for the new samples while comparing them to the true labels. We use metrics such as accuracy (Acc),
inception score (IS), intra-entropy H(y|x) and inter-entropy H(y) (Bai et al., 2021). We extract
batches of size 256, and we identify their static and dynamic subspaces automatically. In contrast
to most existing work, our approach is not based on a variational autoencoder model, and thus the
sampling process in our approach is performed differently. Specifically, for every test sequence,
we randomly sample static features by generating a new latent code based on a random sampling
in the convex hull of the batch. That is, we generate random coefficients {αi} for every sample in
the batch such that they form a partition of unity and αi ∈ [0, 1]. Then, we swap the static features
of the batch with those of the new samples, Z̄[:, :, Istat] =

∑
i αiZ̄[i, :, Istat]. We perform 300

epochs of random sampling, and we report the average results in Tab. 2, 3. Notably, our method
outperforms previous SOTA methods on the Sprites dataset across all metrics. On the MUG dataset,
we achieve competitive accuracy results and better results on IS and H(y|x) metrics. In comparison
to unsupervised methods MoCoGAN, DSVAE and R-WAE, our results are the best on all metrics.

5.3 TWO FACTOR DISENTANGLEMENT OF AUDIO DATA

We additionally evaluate our model on a different data modality, utilizing a benchmark downstream
speaker verification task (Hsu et al., 2017) on the TIMIT dataset (Garofolo et al., 1992). In this task,
we aim to distinguish between speakers, independently of the text they read. We compute for each
test sample its latent representation Z, and its dynamic and static sub-representations Zdyn, Zstat,
respectively. In an ideal two factor disentanglement, we expect Zstat to encode the speaker identity,
whereas Zdyn should be agnostic to this data. To quantify the disentanglement we employ the Equal
Error Rate (EER) test. Namely, we compute the cosine similarity between all pairs of latent sub-
representations in Zstat. The pair is assumed to encode the same speaker if their cosine similarity is
higher than a threshold ϵ ∈ [0, 1], and the pair has different speakers otherwise. The threshold ϵ needs
to be calibrated to receive the EER (Chenafa et al., 2008). If Zstat indeed holds the speaker identity,

Table 2: Disentanglement metrics on Sprites.
Method Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 92.89% 8.461 0.090 2.192
DSVAE 90.73% 8.384 0.072 2.192
R-WAE 98.98% 8.516 0.055 2.197

S3VAE 99.49% 8.637 0.041 2.197
C-DSVAE 99.99% 8.871 0.014 2.197

Ours 100% 8.999 1.6e−7 2.197

Table 3: Disentanglement metrics on MUG.
Method Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 63.12% 4.332 0.183 1.721
DSVAE 54.29% 3.608 0.374 1.657
R-WAE 71.25% 5.149 0.131 1.771

S3VAE 70.51% 5.136 0.135 1.760
C-DSVAE 81.16% 5.341 0.092 1.775

Ours 77.45% 5.569 0.052 1.769

8



Published as a conference paper at ICLR 2023

source target

static swap dynamic swap

Leig

Lstat

Ldyn

KAE

Figure 5: Our ablation study shows that the full model Leig disentangles data well, whereas models
using only Lstat loss or only Ldyn loss or no Leig loss at all struggle with swapping static features.

then its EER score should be low. The same test is also repeated on Zdyn for which we expect high
EER scores as it should not contain speaker information.We report the results in Tab. 4. Our method
achieves the third best overall EER on the static and dynamic tests. However, S3VAE and C-DSVAE
either use significantly more data or self-supervision signals. We label by C-DSVAE∗ and C-DSVAE†

the approach C-DSVAE without content and dynamic augmentation, respectively. When comparing
to unsupervised approaches that do not use additional data (FHVAE, DSVAE, and R-WAE), we
achieve the best results with a margin of 0.27% and 3.37% static and dynamic, respectively.

Table 4: Disentanglement metrics on TIMIT.
Method FHVAE DSVAE R-WAE S3VAE C-DSVAE∗ C-DSVAE† C-DSVAE Ours

Static EER↓ 5.06% 5.65% 4.73% 5.02% 5.09% 4.31% 4.03% 4.46%
Dynamic EER↑ 22.77% 19.20% 23.41% 25.51% 24.30% 31.09% 31.81% 26.78%

5.4 ABLATION STUDY

We train different models to evaluate the effect of our loss term on the KAE architecture: full model
with Leig, KAE + Lstat, KAE + Ldyn, and baseline KAE without Leig. All other parameters are left
fixed. In Fig. 5, we show a qualitative example of static and dynamic swaps between the source and
the target. Each of the bottom four rows in the plot is associated with a different model. The full
model (Leig) yields clean disentanglement results on both swaps. In contrast, the static features are
not perfectly swapped when removing the dynamic penalty (Lstat). Moreover, the model without
static loss (Ldyn) does not swap the static features at all. Finally, the baseline KAE model generates
somewhat random samples. We note that in all cases (even for the KAE model), the motion is swapped
relatively well which can be attributed to the good encoding of the dynamics via the Koopman matrix.

6 DISCUSSION

We have proposed a novel approach for multifactor disentanglement of sequential data, extending
existing two factor methods. Our model is based on a strong inductive bias where we assumed
that the underlying dynamics can be encoded linearly. The latter assumption calls for exploiting
recent Koopman autoencoders which we further enhance with a novel spectral loss term, leading
to an effective disentangling model. Throughout an extensive evaluation, we have shown new
disentanglement sequential tasks such as factorial swap and incremental swap. In addition, our
approach achieves state-of-the-art results on two factor tasks in comparison to baseline unsupervised
approaches, and it performs similarly to self-supervised and weakly-supervised techniques.

There are multiple directions for future research. First, our approach is complementary to most
existing VAE approaches, and thus merging features of our method with variational sampling,
mutual information and contrastive losses could be fruitful. Second, theoretical aspects such as
disentanglement guarantees could be potentially shown in our framework using Koopman theory.
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Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern Koopman theory for
dynamical systems. arXiv preprint arXiv:2102.12086, 2021.
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A KOOPMAN THEORY

We briefly introduce the key ingredients of Koopman theory (Koopman, 1931) which are related to
our work. Consider a dynamical system φ : M → M over the domain M given via the update rule

xt+1 = φ(xt) ,

where xt ∈ M ⊂ Rm, and t ∈ N is the time index. Koopman theory proposes an alternative
representation of the dynamical system φ by a linear yet infinite-dimensional Koopman operator Kφ.
Formally,

Kφf(xt) = f ◦ φ(xt) ,

where f : M → C is an observable complex-valued function, and f ◦ φ denotes composition of
transformations. Due to the linearity of Kφ, we can discuss its eigendecomposition, when it exists.
Specifically, let λj ∈ C, ϕj : M → C be a pair of eigenvalue and eigenfunction respectively of Kφ,
i.e., it holds that

Kφϕj = λjϕj for any j .

From a theoretical viewpoint, there is no loss of information to represent the dynamics with φ or
with Kφ (Eisner et al., 2015). Namely, one can recover the dynamics φ from a given Kφ operator.
Moreover, the Hartman-Grobman Theorem states that the linearization around hyperbolic fixed points
is conjugate to the full, nonlinear system (Wiggins et al., 2003). The latter result was further extended
to the entirety of the basin (Lan & Mezić, 2013). In practice, various tools were recently developed to
approximate the infinite-dimensional Koopman operator using a finite-dimensional Koopman matrix.
In particular, the Dynamic Mode Decomposition (DMD) (Schmid, 2010) is a popular technique for
approximating dynamical systems and their modes. DMD was shown to be intimately related to
Koopman mode decomposition in (Rowley et al., 2009), which deals with the extraction of Koopman
eigenvalues and eigenfunctions in a data-driven setting. Thus, the above discussion establishes the
link between our work and Koopman theory since in practice, our Koopman module is similar in
spirit to DMD. Moreover, it justifies our use of the Koopman matrix to encode the dynamics as well
as disentangle it.

B EXPERIMENTAL SETUP: ARCHITECTURE, DATASETS, HYPERPARAMETERS,
AND MORE

B.1 DATASETS

Sprites. Reed et al. (2015) introduced a dataset of animated cartoon characters. Each character is
composed of static and dynamic attributes. The static attributes include the color of skin, tops, pants
and hair; each contains six possible variants. The dynamic attributes include three different motions:
walking, casting spells and slashing, where each motion admits three different orientations: left, right,
and forward. In total there are nine motions a character can perform and 1296 unique characters.
A sequence is composed of eight RGB image frames of size of 64× 64. We use 9000 samples for
training and 2664 samples for testing.

MUG. Aifanti et al. (2010) share a facial expression dataset which contains image sequences of 52
subjects. Each subject performs six facial expressions: anger, fear, disgust, happiness, sadness and
surprise. Each video in the dataset consists of 50 to 160 frames. To create sequences of length 15
as described in previous work (Bai et al., 2021), we randomly sample 15 frames from the original
sequence. Then, we crop the faces using Haar Cascades face detection, and we resize to 64 × 64
resulting in sequences x ∈ R15×3×64×64 for a total of 3429 samples. Finally, we split the dataset
such that 75% of it is used for the train set, and 25% for the test set.

TIMIT. Garofolo et al. (1992) made TIMIT available which contains 16kHz audio recordings of
American English speakers reading short texts. In total, the dataset has 6300 utterances (5.4 hours)
aggregated from 630 speakers reading 10 phonetically rich sentences each. For each batch of samples
the data pre-processing procedure goes as follows: First, we take the maximum raw audio length in
the batch, and we zero pad all samples to match that length. Second, we calculate for each sample
its log spectrogram with 201 frequency features calculated by a window of 10ms, using Short Time
Fourier Transform (STFT). Thus, each batch has its own t (time steps) length, with an average length
after padding of t = 450. The resulting sequences are of dimension x ∈ Rt×201.

14



Published as a conference paper at ICLR 2023

B.2 DISENTANGLEMENT METRICS

Accuracy (Acc) measures how well a model preserves the fixed features while sampling the others.
We compute it using a pre-trained classifier C (also called judge) which is trained on the same train
set and tested on the same test set as our model. The classifier outputs the probability measures per
feature of the dataset. For instance, C outputs one label for the pose and additional labels for each of
the static factors (hair, skin, top and pants) for the Sprites dataset.

Inception Score (IS) measures the performance of a generator. The score is calculated by first
applying the judge C on every generated sequence x1:t, yielding the conditional predicted label
distribution p(y|x1:t). Then, given the marginal predicted label distribution p(y) we compute the
Kullback—Leibler (KL) divergence KL (p(y|x1:t) || p(y)). The inception score is given by:

IS = exp(Ex [KL(p(y|x1:T )) || p(y)]) .

Intra-Entropy H(y|x) measures the conditional predicted label entropy of all generated sequences.
To obtain the predicted labels we use the judge C, and we compute 1

b

∑b
i=1 H(p(y|xi

1:t)) where b
is the number of generated sequences. Lower intra-entropy score reflects higher confidence of the
classifier C.

Inter-Entropy H(y) measures the marginal predicted label entropy of all generated sequences.
We can compute H(p(y)) using the judge’s output on the predicted labels {y}. Higher inter-entropy
score reflects higher diversity among the generated sequences.

Equal Error Rate (EER) is used in the speaker verification task on the TIMIT dataset. It is the
value of false positive rate or false negative rate of a model over the speaker verification task, when
the rates are equal.

B.3 ARCHITECTURE AND HYPERPARAMETERS

Our models are implemented in the PyTorch (Paszke et al., 2019) framework. We used Adam
optimizer (Kingma & Ba, 2014) and a learning rate of 0.001 for all models, with no weight decay.
Regarding hyper-parameters, in our experiments, k is tuned between 40 and 200 and λrec, λpred

and λeig are tuned over {1, 3, 5, 10, 15, 20}. ks is tuned between 4 and 20, and the ε threshold for
the dynamic loss is tuned over {0.4, 0.5, 0.55, 0.6, 0.65}. The hyper-parameters are chosen through
standard grid search.

B.3.1 ENCODER AND DECODER

Sprites and MUG. Our encoder and decoder follow the same general structure as in Bai et al.
(2021). First we have the same convolutional encoder as in C-DSVAE. Then we have a uni-directional
LSTM. The architecture is described in detail in Tab. 5, where Conv2D and Conv2DT denote a 2D
convolution layer and its transpose, and BN2D is a 2D batch normalization layer. Additionally, the
hyperparameters are listed in Tab. 6, where b is the batch size, k is the size of Koopman matrix,
h is the dimension of the LSTM hidden state, and #epochs is the number of epochs we used for
training. The balance weights λrec, λpred and λeig scale the loss penalty terms of the Koopman layer,
Lrec,Lpred and Leig, respectively. Finally, ks is the amount of static factors, and ϵ is the dynamic
threshold, see Eqs. 6 and 7 in the main text.

Table 5: Architecture details.
Encoder Decoder

64× 64× 3 image Z
Conv2D(3, 32, 4, 2, 1) → BN2D(32) → LeakyReLU LSTM(k, h)
Conv2D(32, 64, 4, 2, 1) → BN2D(64) → LeakyReLU Conv2DT(h, 256, 4, 1, 0) → BN2D(256) → LeakyReLU
Conv2D(64, 128, 4, 2, 1) → BN2D(128) → LeakyReLU Conv2DT(256, 128, 4, 1, 0) → BN2D(128) → LeakyReLU
Conv2D(128, 256, 4, 2, 1) → BN2D(256) → LeakyReLU Conv2DT(128, 64, 4, 1, 0) → BN2D(64) → LeakyReLU
Conv2D(256, k, 4, 2, 1) → BN2D(k) → LeakyReLU Conv2DT(64, 32, 4, 1, 0) → BN2D(32) → LeakyReLU
LSTM(k, k) Conv2DT(32, 3, 4, 1, 0) → Sigmoid
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Table 6: Hyperparameter details.
Dataset b k h #epochs λrec λpred λeig ks ϵ

Sprites 32 40 40 800 15 1 1 8 0.5
MUG 16 40 100 1000 20 1 1 5 0.5
TIMIT 30 165 - 400 15 3 1 15 0

TIMIT. We design a neural network related to DSVAE architecture, but we use a uni-directional
LSTM module instead of a bi-directional layer. The encoder LSTM input dimension is 201 which
is the spectrogram features dimension and its output dimension is k. The decoder LSTM input
dimension is k and its output dimension is 201. The hyperparameter values are detailed in Tab. 6.

B.3.2 KOOPMAN LAYER

The Koopman layer in our architecture is responsible for calculating the Koopman matrix C, and
it is associated with the accompanying losses Lrec,Lpred,Leig. It may happen that the latent codes
provided to the Koopman module are very similar, leading to numerically unstable computations. To
alleviate this issue, we consider two possibilities. One, use blur filter on the image before inserting it
to the encoder (used for the Sprites datasets). Two, add small random uniform noise sampled from
[0, 1] to the latent code Z, i.e., Z + 0.005N , where N denotes the noise (used on TIMIT). Both
options yield more diverse latent encodings, which in turn, stabilize the computation of C and the
training procedure. Finally, we note that our spectral penalty terms Lstat and Ldyn which compose
Leig are stable for a large regime of hyperparameter ranges.

B.3.3 ADDITIONAL DYNAMIC LOSS OPTIONS

The proposed form of Ldyn in Eq. 7 constrains the dynamic factor modulus to an ϵ-ball to promote
separation between the static factors located on the point 1 + ı0 and the dynamic factors. However,
there are settings for which Ldyn may be not optimal. For instance, a dataset may contain measure-
preserving dynamic factors, e.g., as in the motion of a pendulum. Another example includes growing
dynamic factors, e.g., as in a ball moving from the center of the frame towards the boundaries of
the frame. If one has additional knowledge regarding the underlying dynamics, one may adapt Ldyn
accordingly. We consider the following options:

1. Set ϵ = 1 while adding the dynamic loss term to Leig. In this case, Ldyn penalizes dynamic
factors that are inside a δ-ball around the point 1 + 0ı. This option addresses measure-
preserving dynamic oscillations in the data.

2. Set ϵ = 1 + η, η > 0 while adding the dynamic loss term to Leig. In this case, Ldyn

penalizes dynamic factors that are inside a δ-ball around the point 1 + 0ı. This option
addresses growing dynamic factors.

B.4 DISENTANGLEMENT PROCESS USING MULTIFACTOR DISENTANGLING KOOPMAN
AUTOENCODERS

In what follows, we detail the process of extracting the multifactor latent representation of a sample,
and in addition, we will demonstrate a general swap of a factor between two arbitrary samples. We
let X ∈ Rb×t×m be our input batch and x ∈ Rm be a single sample that we want to calculate its
multifactor disentangled latent representation. The disentanglement process of x into its multiple
latent factors representations using our model contains the following steps:

1. We insert X into the model encoder and get the encoder output Z ∈ Rb×t×k.

2. We compute the Koopman matrix C for the batch X using the Koopman layer as described
in the main text.

3. We compute the eigendecomposition of C to get the eigenvectors matrix V ∈ Ck×k. In
addition, we calculate U = V −1. Now we calculate z̄T := zTV for every z ∈ Rk. z̄ stores
the coefficients in the Koopman space and they are the disentangled latent representation in
our method. Notice that zT = zTV U = z̄TU
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4. We identify the indices that correspond to each latent factor. It may be that several indices
represent one factor. We use the identification method of subspaces described in B.5 to
extract the indices set. Let Ik be some latent factor index set. Then, the latent representation
of factor Ik for the input x is z̄[Ik]. For instance, Ik can be the hair color factor. If we want
to take a group of factors, we can aggregate a few factors together I = Is ∪ It ∪ Ih ∪ Ip,
where Is = skin indices, It = top indices, Ih = hair indices, Ip = pants indices. In practice
I encodes a character identity on the Sprites dataset.

To conclude, these four steps describe the process of disentangling arbitrary factors in our setup. To
demonstrate a swap, let us assume we use the Sprites dataset. Let x1, x2 be two samples in X and let
us assume we want to swap their hair and skin attributes. We will use steps 1, 2 and 3 to extract x1, x2

multifactor latent representation z̄1, z̄2. Then, using Step 4, we will identify and extract IK = Is∪ Ih,
were Ih = hair indices and Is = skin indices. Now, we want to swap the latent representations of the
hair and skin factors between the sample. To do so, we simply preform z̄1[IK ] = z̄2[IK ] and vice
versa z̄2[IK ] = z̄1[IK ] in parallel.

To get back to the pixel space, we need to repeat our steps backward. First we need to compute
the new zi after the swap. We will do it using the V matrix we calculated in step 3. We compute
z̃T1 = z̄T1 V, z̃

T
2 = z̄T2 V . Finally, we can insert Re(z̃1),Re(z̃2) as inputs to the model decoder and get

the desired swapped new samples x̃1, x̃2. Last note, if z is some input for the model decoder then z
must be real-valued, however, z is typically complex-valued since V,U ∈ Ck×k. Thus, we keep the
real part of z, and we eliminate its imaginary component.

In what follows, we show that Re(zTV U) = zT , and thus feeding the real part to the decoder as
mentioned above is well justified. Moreover, a similar proof holds for swapped latent vectors, i.e.,
Im(z̃) = 0. Finally, we validated that standard numerical packages such as Numpy and pyTorch
satisfy this property up to machine precision.
Theorem 1. If C ∈ Rk×k is full rank, then Re(zTV U) = zT for any z ∈ Rk, where V is the matrix
of eigenvectors of C, and U = V −1.

Proof. It follows that

zTV U =

k∑
j=1

⟨z, vj⟩uj ,

where vj is the j-th column of V , and uj is the j-row of U . To prove that Im(zTV U) = 0, it is
sufficient to show that if v1 and v2 are complex conjugate pair of vectors from V , i.e., vi1 = vi2 , then
⟨z, v1⟩u1 is the complex conjugate of ⟨z, v2⟩u2. First, we have that

a1 = ⟨z, v1⟩ =
k∑
i

z[i]v1[i] =

k∑
i

z[i]v2[i] = ⟨z, v2⟩ = a2 ,

where the third equality holds since v1 = v2, and the last equality holds since z is real-valued.
The proof is complete if we show that u1 = u2, since then we have ⟨z, v1⟩u1 = ⟨z, v2⟩u2. To
verify that complex conjugate column pairs transform to complex conjugate row pairs, we assume
w.l.o.g that the matrix V can be organized such that nearby columns are complex conjugates, i.e.,
v1 = v2, v3 = v4, and so on. Let P be the permutation matrix that exchanges the columns of V to
their complex conjugates, i.e., it switches the i-th column with the (i+ 1)-th column, where i is odd.
Then V P = V . It follows that

(V P )
−1

= PTV −1 = PTU = U ,

namely, the i-th row is the complex conjugate of the (i+ 1)-th row, where i is an odd number.

B.5 IDENTIFICATION OF SUBSPACES

There are two scenarios in which we need to identify semantic Koopman subspaces in the eigenvectors
of the Koopman matrix C:

1. separate between static and dynamic information (two factor separation).
2. identify individual factors, e.g., hair color in sprites (multifactor separation).
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Table 7: Accuracy measures of factorial swap experiments, see Tab. 1.
Test action skin top pants hair

hair swap 11.35%± 0.65% 17.40%± 0.79% 17.07%± 0.77% 36.29%± 0.88% 90.20%± 0.52%
skin swap 11.35%± 0.65% 72.72%± 0.68% 17.23%± 0.89% 31.22%± 0.84% 16.92%± 0.77%

Two factor separation. To distinguish between time-invariant and time-varying factors, we sort
the eigenvalues based on their distance from the complex value 1 + ı0. Then, the subspace of static
features Istat is defined as the eigenvalues’ indices of the first ks elements in the sorted array. Then,
the dynamic features subspace Idyn holds the remaining indices, i.e., Idyn = I \ Istat, where I is the
set of all indices, and S1 \ S2 generates the set difference of the sets S1 and S2.

Multifactor separation. The identification of individual features such as the hair color or skin
color in Sprites is less straightforward, unfortunately. Essentially, the key difficulty lies in that the
Koopman matrix may encode an individual factor using a subspace whose dimension is unknown
a priori. In addition, the subspace related to e.g., hair color may depend on the particular batch
sample. For instance, we observed cases where the hair color subspace was of dimension 1, 2 and
3 for three different batches. Nevertheless, manual inspection of Istat typically reveals the role of
the eigenfunctions, and it can be achieved efficiently as ks ≤ 15 in our experiments. Still, we opt
for an automatic approach, and thus we propose the following simple procedure. We consider the
power set of Istat, denoted by Istat. Let J be an element of Istat, then we swap the content of
the batch with respect to J , and check the accuracy of the factor in question (e.g., hair color) using
the pre-trained classifier. The subspace J which corresponds to a single factor change is the one for
which the accuracy of the factor decreases the most with respect to the original samples. In practice,
we noticed that often the subspace of a factor is composed of subsequent eigenvectors in the sorting
described for the two factor separation. Thus, many subsets J of the power set Istat can be ignored.
We leave further exploration of this aspect for future work.

B.6 SPEAKER VERIFICATION EXPERIMENT DETAILS

The speaker verification task in Sec. 5.3 is performed as follows. We use the test set of TIMIT which
contains 24 unique speakers, with eight different sentences per speaker. In total there are 192 audio
samples. We compute the latent representation Z for this data, and its Koopman matrix C. Using the
eigendecomposition of C, we identify the static and dynamic subspaces Istat and Idyn. We denote
by Zstat, Zdyn the latent codes obtained when projecting Z to Istat, Idyn, respectively. Formally,
this is computed via Zstat = Z · Φ−1[:, Istat] · Φ[Istat], and similarly for the dynamic features.
To perform the speaker verification task we calculate the identity representation code for the batch
given by

Ẑstat =
1

t

t∑
j=1

Zstat[:, j, :] , Ẑdyn =
1

t

t∑
j=1

Zstat[:, j, :] , Ẑdyn, Ẑdyn ∈ R192×165 .

The EER calculations are performed separately for Ẑstat and Ẑdyn for all of their 1922 = 18336
pair combinations.

C ADDITIONAL RESULTS

C.1 MEAN AND STANDARD DEVIATION MEASURES

We report the mean and standard deviation measures computed over 300 runs for the results reported
in Tab. 1, 2, 3 in the main text. The results are detailed in Tab. 7, 8. The low standard deviation
highlights the robustness of our method to various seed numbers, and the overall stability of our
trained models.

C.2 DATA GENERATION

We present qualitative results of our model’s unconditional generation capabilities. To this end, we
randomly sample static and dynamic features by producing a new latent code based on a random
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Table 8: Disentanglement metrics on Sprites and MUG, see Tabs. 2 3.
Method Acc↑ IS↑ H(y|x)↓ H(y)↑
Sprites 100%± 0% 8.999± 2.3e−6 1.6e−7± 2.2e−7 2.197± 0

MUG 77.45%± 0.62% 5.569± 0.026 0.052± 0.004 1.769± 0

sampling in the convex hull of two randomly chosen samples from the batch. That is, for every
sample in the batch we generate random coefficients {αj ∈ [0, 1]} which form a partition of unity∑

j∈J αj = 1, where J denotes the sample indices, and |J | = b = 2 is the number of samples in the
combination. Then, we swap the static or dynamic features of the source (src) sample using the convex
combination, Z̄[src, :, Istat] =

∑
j∈J αjZ̄[j, :, Istat], Z̄[src, :, Idyn] =

∑
j∈J αjZ̄[j, :, Idyn],

respectively. The reconstruction of the latent codes for which static or dynamic factors are swapped
are shown on the right panels in Figs. 6, 7, 13, 14 respectively. Our results on both Sprites and MUG
datasets demonstrate a non-trivial generation of factors while preserving the dynamic/static factors
shown on the left panels.

C.3 TWO FACTORS AND MULTIFACTOR SWAPS

We present several qualitative results of two factor swapping between static and dynamic factors of
two given samples. In Figs. 8 and 9, each odd indexed row i ∈ {1, 3, 5, 7} shows the source sequence
on the left and the target sequence to the right. Even indexed rows j ∈ {2, 4, 6, 8} represent the
reconstructed samples after the swap where on the left we show the static swap, and on the right the
dynamic swap. Notably, all examples show clean swaps while preserving non-swapped features.

Additionally, we extend the result in Fig. 2 to show an example in which we swap all multifactor
combinations. Specifically, we show in Fig. 12 several multifactor swap from the source sequence
(top row) to the target sequence (bottom row). The text to the left of every sequence in between
denotes the swapped factor(s). For instance, the second row with the text p shows how the pants color
of the target is swapped to the source character. Similarly, the row with the text s+t+h is related to
the swap of the skin, top, and hair colors.

Figure 6: Unconditional generation of Sprite characters. The left panel shows the source sequences,
and the right panel demonstrates the sampled characters where time-varying features are preserved.
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Figure 7: Unconditional generation for the MUG dataset. The left panel shows the source sequences,
and the right panel demonstrates the sampled identities where time-varying features are preserved.

C.4 STATIC INCREMENTAL SWAP ON MUG

Similarly to Fig. 4 in the main text, we now show an incremental swap example on the MUG dataset
where the static features are swapped gradually, see Fig. 10. The multifactor subspaces used in this
experiment are of sizes |I1| = 1, |I2| = 2, |I3| = 5 where I1 ⊂ I2 ⊂ I3 ⊂ Istat. We observe a
non-trivial gradual change from the source sequence (top row) to the target sequence (bottom row).
In each incremental step, more static features are changing towards the target samples. Specifically,
the skin color, hair color and density, ears structure, nose structure, chicks structure, chicks texture,
lips and more other physical characteristics change gradually to better match the physical appearance
of the target. Additionally, we observe that the source expression of the source is not altered during
the transformation, highlighting the disentanglement capabilities of our approach.

Figure 8: Several static and dynamic swap results on the Sprites dataset.
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Figure 9: Several static and dynamic swap results on the MUG dataset.

C.5 KOOPMAN MATRIX SPECTRUM ABLATION STUDY

We would like to explore the impact of our spectral loss on the spectrum and the eigenvalues scattering
of the Koopman matrix C. To this end, we train four different models: full model with Leig, KAE +
Lstat, KAE + Ldyn, and baseline KAE without Leig. We show in Fig. 11 the obtained spectra for
the various models, where eigenvalues associated with static factors are marked in blue, and the
dynamic components are highlighted in red. Our model shows a clear separation between the static
and dynamic factors, allowing to easily disentangle the data in practice. In contrast, the models KAE
and Lstat yield spectra in which the static and dynamic components are very close to each other,
leading to challenging disentanglement. Finally, the model Ldyn shows separation in its spectrum,
however, some of the static factors drift away from the eigenvalue 1.

C.6 COMPUTATIONAL RESOURCES COMPARISON

We compare our method in terms of network memory footprint and the amount of data used for
the Sprites dataset. We show in Tab. 9 the comparison of our method with respect to the other
methods. All other approaches use significantly more parameters than our method, which uses 2
million weights. In addition, S3VAE and C-DSVAE utilize additional information during training.
S3VAE exploits supervisory signals to an unknown extent as the details do not appear in the paper,
and the code is proprietary. C-DSVAE uses data augmentation of size sixteen times the train set, that
is, for content augmentation they generated eight times more train data, and the same amount for the
motion augmentation. In comparison, our method and DSVAE do not use any additional data on top
of the train set.

The time complexity analysis of our method is governed by the complexities of the encoder, decoder,
the Koopman layer and the loss function. The encoder and decoder can be chosen freely and are
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Figure 10: An incremental swap result of the static features on the MUG dataset.
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Figure 11: The Koopman matrix spectrum of different models.

typically similar to prior work (Hsu et al., 2017; Li & Mandt, 2018; Zhu et al., 2020; Bai et al., 2021),
and thus we focus our analysis on the Koopman layer and the loss function. The dominant operation
in the Koopman layer in terms of complexity is the computation of the pseudo-inverse of Zp (please
see Section 3). Computing the pseudo-inverse of a matrix is implemented in high-level deep learning
frameworks such as pyTorch via SVD. The textbook complexity of SVD is O(min(mn2,m2n))
for an m × n matrix. In addition, computing the loss function involves eigendecomposition. The
theoretic complexity of eigendecomposition is equivalent to that of matrix multiplication, which in
our case is O(k2.376), where the Koopman operator is of size k × k. In comparison, the matrices
Zp for which we compute pseudo-inverse are of size b · t × k, and typically k < b · t. Thus, the
pseudo-inverse operation governs the complexity of the algorithm. The development of efficient
SVD algorithms for the GPU is an ongoing research topic in itself. As far as we know, there is some
parallelization in torch SVD computation, mainly affecting the decomposition of large matrices. The
Koopman matrices we use are typically small (e.g., 100× 100), and thus the effective computation
time is short.

Table 9: Computational resources comparison.
Method DSVAE R-WAE S3VAE C-DSVAE Ours

Type unsupervised (weakly) unsupervised self-supervised self-supervised unsupervised
Params 21M 121M 11M 11M 2M
Data - labels supervisory signals data augmentation (×16) -
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Figure 12: Multifactor swap of individual static factors and their combinations on the Sprites dataset.
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Figure 13: Unconditional generation of Sprite characters where the static factors are kept fixed, and
the dynamic features are randomly sampled.

Figure 14: Unconditional generation of MUG images where the static factors are kept fixed, and the
dynamic features are randomly sampled.
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Mediated Protocols for Oblivious Transfer and
Polynomial Evaluation

Aviad Ben Arie Tamir Tassa

Abstract

A secure multiparty computation (MPC) allows several parties to
jointly compute a function over their inputs while keeping their inputs
private. As a basic setting, the protocol involves only parties that
hold inputs. In mediated (or server-aided) MPC, the protocol involves
in addition to those parties external mediators/servers that perform
the needed computation, without learning information on the inputs
and outputs. In this study we propose mediated protocols for several
fundamental MPC functionalities. Those protocols involve a set of
mediators to whom the parties distribute secret shares in their private
inputs. The mediators then proceed to compute the needed functional-
ity on the received secret shares, while remaining completely oblivious
to all underlying values. At the end, the mediators send secret shares
to the relevant parties who can then reconstruct the sought-after out-
puts. We begin with a protocol called DSP (Distributed Scalar Prod-
uct) for computing scalar products of private vectors. We then build
upon DSP in designing various protocols for Oblivious Transfer (OT):
k-out-of-n OT, Priced OT, and Generalized OT. We also use DSP in
designing protocols for Oblivious Polynomial Evaluation (OPE) and
Oblivious Multivariate Polynomial Evaluation (OMPE). In all of these
problems there are two parties, Alice and Bob, that hold private vec-
tors and they wish to compute their scalar product. However, in each
of these problems Bob is restricted to submit a vector of a specified
form. Hence, a crucial ingredient in our protocols is a sub-protocol
in which the mediators validate that Bob’s vector complies with the
relevant restrictions, without learning anything else on that vector.
As our protocols are based on Shamir’s secret sharing scheme, they
offer information-theoretic security, under the assumption of honest
majority among the mediators, and they are very efficient.
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1 Introduction

Distributed computing deals with settings in which a computation is carried
out by several parties over input data that is distributed among them. One of
the main challenges in distributed computing is the privacy of the interacting
parties who, in some application scenarios, may wish to keep their own part
of the input a secret. Secure multi-party computation (MPC) [23] is a cen-
tral field of study in cryptography that aims at providing privacy-preserving
solutions to distributed computing. In the basic setting of MPC, there are n
mutually distrustful parties, P1, . . . , Pn, that hold private inputs, x1, . . . , xn,
and they wish to compute some joint function on their inputs, f(x1, . . . , xn).
(The function can be sometimes multi-valued and issue different outputs to
different designated parties.) Ideally, during the computation process, no
party should gain any information on other parties’ inputs, beyond what
can be inferred from their own input and the output. Such perfect privacy
is achievable for any function f that can be realized by a Boolean or an
arithmetic circuit, by invoking generic solutions such as Yao’s garbled circuit
construction [23]. Such generic solutions are practical only for rather simple
functions. When dealing with more involved functions, generic solutions are
usually impractical, and more specialized solutions, which are tailored to the
function of interest, should be developed.

Typically in distributed computing, and in particular in MPC, the only
parties that are involved in the protocol are the functionality-relevant par-
ties, namely, the parties that hold the inputs or those who need to receive
the outputs. However, some studies considered a model of computation that
is called the mediated model [1, 2, 8, 9, 10, 18, 21], or the client-server model
[4, 6, 12, 16]. In that model there exist, apart from the functionality-relevant
parties, also external mediators, M1, . . . ,MD, D ≥ 1, to whom the parties
outsource some of the needed computations. The mediators perform the
computations while remaining oblivious to the private inputs and outputs.
It turns out that the mediated model offers significant advantages: it may
facilitate achieving the needed privacy goals; it does not require the par-
ties to communicate with each other (a critical advantage in cases where
the parties cannot efficiently communicate among themselves); in some set-
tings it reduces communication costs; it allows the parties, that may run on
computationally-bounded devices, to outsource costly computations to ded-
icated servers; and in some application scenarios it enables an economically-
realistic collaboration model between them [18].
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In this work we focus on basic MPC problems that involve two (n = 2)
parties, Alice and Bob, and propose mediated protocols for their solution.
In each of the studied problems, Alice’s and Bob’s private inputs may be
encoded as vectors in a vector space over a finite field Zp; specifically, a =
(a1, . . . , aN) ∈ ZN

p is Alice’s private vector and b = (b1, . . . , bN) ∈ ZN
p is

Bob’s, for some integer N . Alice and Bob delegate to a set of D > 2 me-
diators, M1, . . . ,MD, secret shares in their private vectors. Subsequently,
the mediators proceed to perform a multi-party computation on the received
secret shares in order to validate the legality of the inputs, if the problem
at hand dictates rules by which the input vectors must abide. If the inputs
were validated, the mediators proceed to compute secret shares in the re-
quired output and then they send those shares to Alice and/or Bob who may
then use those shares in order to reconstruct the required output.

We begin by discussing the generic problem of scalar product, in which
the required output is the scalar product of the two private input vectors,
a ·b. Our distributed scalar product protocol is then used in the subsequent
problems that we consider. The first is the problem of oblivious transfer
(OT) [15], which is a fundamental building block in MPC [13] and in many
application scenarios such as Private Information Retrieval (PIR) [5]. We
consider several variants of OT: k-out-of-N OT, priced OT, and general-
ized OT. Then we deal with the problem of oblivious polynomial evaluation
(OPE); here, Alice holds a private uni- or multi-variate polynomial f(·) and
Bob holds a private value x. The goal is to let Bob have f(x) so that Alice
learns nothing on x while Bob learns nothing on f beyond what is implied
by x and f(x).

Mediation helps in significantly simplifying computations that may be
much more involved in the case where Alice and Bob have no one else to rely
on. In addition, mediation enables carrying out all of the MPC problems that
we consider here even when Alice and Bob do not know each other and thus
cannot communicate among themselves. In fact, Alice can complete her part
in the protocol before even Bob does his. For example, if Alice is a server
that hosts a database, then her vector a could hold decryption keys for the
items in her database; the other party, Bob, can be any client that wishes to
retrieve one of the items in that database, while keeping Alice oblivious of
his choice. Alice and Bob can use our OT protocols for that purpose. But
as they do not need to communicate among themselves, but only with the
mediators, Bob may perform his retrieval long time after Alice had already
uploaded all information relating to her database.
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The paper is structures as follows. Section 2 provides the relevant crypto-
graphic preliminaries. In Section 3 we describe our scalar product protocol.
Section 4 is devoted to the various OT protocols. In Section 5 we present
the OPE protocols. We analyze the communication complexity of all our
protocols in Section 6 and report experimental results in Section 7.

2 Preliminaries

Here we provide all necessary background on secret sharing (Section 2.1) and
describe our assumptions on the mediators (Section 2.2).

2.1 Secret sharing

The main idea in our protocols for solving the various MPC problems dis-
cussed herein is to use secret sharing. Alice and Bob distribute among the
D mediators shares in each entry of their private vectors, using t-out-of-D
Shamir’s secret sharing scheme [17], with

t = ⌊(D + 1)/2⌋ . (1)

(Hereinafter we shall refer to such sharing as (t,D)-sharing.) Namely, Alice
generates for each entry an, n ∈ [N ] := {1, . . . , N}, a polynomial fA

n (x) =
an+

∑t−1
i=1 αix

i, where αi are secret random field elements, and then she sends
to Md the value [an]d := fA

n (d), d ∈ [D] := {1, . . . , D}. Bob acts similarly
with each entry bn in his private vector, using another secret generating
polynomial fB

n (·) of degree t− 1.
The mediators then execute some distributed computation on the shares

that they had received in order to arrive at secret shares in the needed output.
At the end, they distribute to Alice and/or Bob shares in the desired output
from which Alice and/or Bob may reconstruct that output.

The underlying field Zp is selected so that p is larger than all values in
the underlying computation. If we assume that all entries in the two private
vectors are bounded by some T > 0, then selecting p > max{NT 2, D} is
sufficient.

Our protocols rely on the affinity of secret sharing. Namely, if s1 and s2
are two secrets that are independently (t,D)-shared among M1, . . . ,Md, and
a, b, c are three public field elements, then the mediators can compute shares
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in as1+ bs2+ c. Specifically, if [si]d is Md’s share in si, i = 1, 2, d ∈ [D], then
{a[s1]d + b[s2]d + c : d ∈ [D]} is a proper (t,D)-sharing of as1 + bs2 + c.

Unlike affine combinations, the computation of products of shared values
in more involved. Namely, given (t,D)-sharing in s1 and in s2, the mediators
need to engage in an MPC protocol in order to get (t,D)-sharing in s1 ·s2 [7].
However, in order to compute only a single multiplication of shared values it
is possible to take a simpler approach: each mediator multiplies locally the
shares he holds in the two secrets. It is easy to see that the resulting set
of shares, {[s1]d · [s2]d : d ∈ [D]}, is a proper (2t − 1, D)-sharing of s1 · s2.
Indeed, assume that fi(x) = si +

∑t−1
j=1 cjx

j is the random secret-sharing
polynomial that was used to generate shares in si, i = 1, 2. In that case, the
share given to Md in si is [si]d = fi(d). Define F (x) = f1(x) · f2(x). F (x)
is a random polynomial of degree 2t − 2 where F (0) = s1 · s2. Therefore,
{[s1]d · [s2]d : d ∈ [D]} are the shares in s1 · s2 as generated by the polynomial
F . Since our selection of the threshold t, Eq. (1), ensures that 2t − 1 ≤ D,
we thus obtained a proper (2t− 1, D)-sharing in the product s1 · s2.

2.2 Honest majority and security of our protocols

The mediators are assumed to be semi-honest, in the sense that they follow
the prescribed protocol, but try to extract from their view in the protocol
information on the private inputs. We also assume them to have an honest
majority, in the sense that if some of them are corrupted by a malicious
adversary, the number of corrupted mediators is strictly smaller than the
number of the remaining honest mediators. Under such an assumption, the
selection of the threshold t = ⌊(D + 1)/2⌋ in the secret sharing scheme
guarantees that the mediators will never be able to learn any information on
the shared inputs, so that Alice’s and Bob’s privacy is fully preserved.

3 Distributed Scalar Product

Here we deal with the following MPC problem.

Definition 1. (DSP) Assume that Alice has a private vector a = (a1, . . . , aN) ∈
ZN

p , and Bob has a private vector b = (b1, . . . , bN) ∈ ZN
p . They wish to com-

pute their scalar product a · b without revealing any other information on
their private vectors.
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Protocol 1 solves that problem. In the first loop (Lines 1-3), Alice and
Bob distribute to the mediators (t,D)-shares in each entry of their vectors.
Then, each mediator Md computes a (2t − 1, D)-share in an · bn for each
n ∈ [N ], and subsequently he computes a (2t − 1, D)-share in the scalar
product into sd (Line 5). He then sends that share to Alice and Bob (Line 6)
who subsequently use those shares to reconstruct the needed scalar product
(Line 7).

The protocol is unconditionally secure under the assumption of an hon-
est majority since any subset of less than t mediators cannot extract any
information on the private vectors.

Protocol 1: Distributed Scalar Product
Parameters: p - field size, N - the dimension of the vectors, D -

number of mediators, t = ⌊(D + 1)/2⌋.
Inputs: Alice has a private vector a = (a1, . . . , aN) ∈ ZN

p , Bob has
a private vector b = (b1, . . . , bN) ∈ ZN

p .

1 forall n ∈ [N ] do
2 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.

4 forall d ∈ [D] do
5 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

6 Md sends sd to Alice and Bob.

7 Alice and Bob use any 2t− 1 shares out of {s1, . . . , sD} to
reconstruct a · b.
Output: Alice and Bob get a · b.

4 Distributed Oblivious Transfer

In this section we consider several variants of the Oblivious Transfer (OT)
protocol. We begin with the basic variant of k-out-of-N OT in Section 4.1.
We then discuss Priced OT (Section 4.2) and Generalized OT (Section 4.3).

4.1 k-out-of-N Oblivious Transfer

The problem that we consider here is the following:
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Definition 2. (OTN
k ) Assume that Alice has a set of N messages, m1, . . . ,mN ∈

Zp. Bob wishes to learn k of those messages, say mj1 , . . . ,mjk , for some
j1, . . . , jk ∈ [N ]. A k-out-of-N Oblivious Transfer (OTN

k ) protocol allows Bob
to learn mj1 , . . . ,mjk , and nothing beyond those messages, while preventing
Alice from learning anything about Bob’s selection.

We begin by considering the case k = 1 and then we address the general
case. The OTN

1 problem can be reduced to DSP (Section 3) if Alice sets
a := (m1, . . . ,mN) and Bob sets b := ej (the unit vector that consists of
N − 1 zeros and a single 1 in the jth entry, where j is the index of the
message that Bob wishes to retrieve). However, the DSP protocol cannot be
executed näıvely, since Bob may cheat and send to the mediators shares in a
vector that is not a unit vector and, consequently, he may obtain some linear
combination of the messages, and not just a single message as dictated by the
OT definition. Such an abuse of the protocol may enable Bob in some cases
to learn more than just one message. For example, if Bob happens to know
that m1 belongs to some one-dimensional subspace of ZN

p while m2 belongs
to another one-dimensional subspace of ZN

p , then by choosing to learn the
linear combination m1+m2 he will be able to infer both m1 and m2. To that
end, the DSP protocol can be executed only after the mediator apply some
preliminary validation protocol:

Definition 3. (DVV) Assume that the mediators M1, . . . ,MD hold (t,D)-
shares in a vector v ∈ ZN

p . Let W be a subset of ZN
p . A Distributed Vector

Validation (DVV) protocol is a protocol that the mediators may execute on
their shares that outputs 1 if v ∈ W and 0 otherwise, and reveals no further
information on v in the case where v ∈ W .

In our case W = {ej : j ∈ [N ]}. The mediators can validate that b ∈ W
by verifying the following two conditions: (1) bn · (bn−1) = 0 for all n ∈ [N ];
and (2)

∑
n∈[N ] bn = 1. Indeed, the first condition implies that all entries in

b are either 0 or 1, while the second condition ascertains that exactly one
of the entries equals 1. Note that if the two conditions are verified, then
the mediators may infer that Bob’s vector is legal, but nothing more than
that, as desired. Namely, if Bob is honest then his privacy is fully protected.
However, if Bob is dishonest and distributed shares in a vector b /∈ W , then
the above described DVV protocol will reveal some additional information
on b; however, that is acceptable since by acting dishonestly Bob looses his
right for privacy.
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Protocol 2 implements those ideas. After Alice and Bob set their vectors
and distribute shares in them to the mediators (Lines 1-5), the mediators
validate Bob’s vector for compliance with conditions 1 (Lines 6-10) and 2
(Lines 11-15). If Bob’s vector was validated, they compute (2t−1, D)-shares
in the scalar product and send them to Bob so that he can recover the scalar
product that equals his message of choice (Lines 16-19).

For a general k > 1, it is possible to solve OTN
k by running Protocol 2 k

times, with one exception: Alice needs to distribute shares in her vector only
once (Lines 1 and 4 in Protocol 2). We proceed to describe an alternative
solution, Protocol 3, and then we compare the efficiency of the two solutions.

Protocol 3 multiplies Alice’s vector a := (m1, . . . ,mN) with the vector
b =

∑k
i=1 eji where 1 ≤ j1 < . . . < jk ≤ m are the indices of the k messages

that Bob wishes to retrieve. But instead of computing their scalar product,∑N
n=1 anbn, the protocol computes shares in the products anbn for all n ∈ [N ]

and sends them to Bob. Bob then uses the shares of anbn only for n ∈
{j1, . . . , jk} in order to recover the requested messages.

Here, the DVV sub-protocol consists of verifying two conditions: that
bn · (bn − 1) = 0 for all n ∈ [N ], and that

∑
n∈[N ] bn = k. The first condition

implies that all entries in b are either 0 or 1, while the second condition
ascertains that exactly k of the entries equal 1.

After Alice and Bob set their vectors and distribute shares in them to the
mediators (Lines 1-5), the mediators validate Bob’s vector for compliance
with conditions 1 (Lines 6-10) and 2 (Lines 11-15). If Bob’s vector was
validated, they compute (2t−1, D)-shares in each of the N products between
the components of the two vectors and send them to Bob (Lines 16-19) for
him to recover the requested k messages (Lines 20-21).
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Protocol 2: 1-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

mediators, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has a selection index

j ∈ [N ].
1 Alice sets a = (m1, . . . ,mN).
2 Bob sets b = ej.
3 forall n ∈ [N ] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.

6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets [cn]d = [bn]d · ([bn]d − 1).
8 The mediators use any 2t− 1 shares out of {[cn]1, . . . , [cn]D} to

compute ω := bn · (bn − 1).
9 if ω ̸= 0 then

10 Abort

11 forall d ∈ [D] do
12 Md computes cd ←

∑
n∈[N ][bn]d.

13 The mediators use any t shares out of {c1, . . . , cD} to compute
ω :=

∑
n∈[N ] bn .

14 if ω > 1 then
15 Abort
16 forall d ∈ [D] do
17 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

18 Md sends sd to Bob.

19 Bob uses any 2t− 1 shares out of {s1, . . . , SD} to reconstruct
a · b = mj.
Output: Bob gets mj.

4.2 Priced Oblivious Transfer

Consider a setting of OT in which each of Alice’s messages has a weight and
the retrieval policy allows Bob to learn any subset of messages in which the
sum of weights does not exceed some given threshold. For example, if Alice
holds a database of movies and each movie has a price tag, then if Bob had
prepaid some amount, Alice wishes to guarantee that he retrieves movies of
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Protocol 3: k-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

mediators, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has selection indices

1 ≤ j1 < . . . < jk ≤ N .
1 Alice sets a = (m1, . . . ,mN).
2 Bob sets b = (b1, . . . , bN), where bn = 1 for n ∈ {j1, . . . , jk} and

bn = 0 otherwise.
3 forall n ∈ [N ] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.

6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets [cn]d = [bn]d · ([bn]d − 1).
8 The mediators use any 2t− 1 shares out of {[cn]1, . . . , [cn]D} to

compute ω := bn · (bn − 1).
9 if ω ̸= 0 then

10 Abort

11 forall d ∈ [D] do
12 Md computes cd ←

∑
n∈[N ][bn]d.

13 The mediators use any t shares out of {c1, . . . , cD} to compute
ω :=

∑
n∈[N ] bn .

14 if ω > k then
15 Abort
16 forall d ∈ [D] do
17 forall n ∈ [N ] do
18 Md computes [cn]d ← [an]d · [bn]d.
19 Md sends [cn]d to Bob.

20 forall n ∈ {j1, . . . , jk} do
21 Bob uses any 2t− 1 shares out of {[cn]1, . . . , [cn]D} to reconstruct

cn = an · bn = mn.
Output: Bob gets mj1 , . . . ,mjk .

aggregated cost that does not exceed what he had paid, while Bob wishes to
prevent Alice from knowing what movies he chose to watch.

Definition 4. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
Assume that each massage mn has a weight wn ≥ 0, n ∈ [N ], and let T > 0 be
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some given threshold. Then a Priced OT protocol allows Bob to retrieve any
subset B ⊆ U for which

∑
mn∈B wn ≤ T . Bob cannot learn any information

on the messages in U \B, while Alice has to remain oblivious of Bob’s choice.

We assume that the weights w1, . . . , wN are publicly known, since they
represent information that is supposed to be known to all. The threshold T ,
on the other hand, represents the amount that Bob had paid and, therefore,
it is private and should remain so.

Protocol 4 executes Priced OT. It coincides with Protocol 3 except for
the second part of the DVV sub-protocol. If in Protocol 3 the mediators
obliviously verified that

∑
n∈[N ] bn ≤ k (Lines 11-15 there), then here it is

necessary to obliviously verify that
∑

mn∈B wn =
∑

n∈[N ] wnbn ≤ T . To en-
able that verification, the protocol starts by publishing the vector of weights
(Line 1). Then, both Alice and Bob distribute to the mediators (t,D)-shares
in T (Lines 2-3) and then the mediators verify that the two underlying thresh-
olds equal, without recovering that threshold (Lines 4-7). Those steps are
necessary in order to ensure both Alice and Bob that the correct threshold
is used in the DVV sub-protocol. (Namely, Bob is ascertained that Alice did
not provide a too low value of T while Alice is ascertained that Bob did not
provide a too high value of T ).

The core of the protocol is the execution of the OTN
k protocol - Protocol 3

(Line 8). That protocol is executed as is except for the replacement of Lines
11-15 there with Sub-protocol 5. The sub-protocol begins with the mediators
computing (t,D)-shares in the difference e := T −

∑
n∈[N ] wnbn (Lines 1-2).

Then, any subset of t mediators can recover e (Line 3). Finally, if e < 0 the
protocol aborts (Line 4), while otherwise it proceeds towards completing the
transfer.

Sub-protocol 5 reveals to the mediators the difference e = T−
∑

n∈[N ] wnbn.
Such information leakage can be reduced if Bob adds to his list of retrieved
messages additional redundant messages that he will ignore later on. That
way, the difference can be made a nonnegative number smaller than w :=
maxn∈[N ] wn. Such a difference reveals no meaningful information neither on
Bob’s threshold nor on his selections. However, if desired, it is possible to
eliminate even that information leakage: assume that w < 2ℓ; then Alice may
add ℓ phantom messages m̂i, 0 ≤ i < ℓ, with the weights 2i, and then Bob
will add to his list of requested messages also the subset of phantom messages
of which the sum of weights equals exactly e. That way, the mediators will
always recover in Line 3 in Sub-protocol 5 the value 0.
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4.2.1 The case of secret weights

Even though the weights of messages are typically public, it is possible to
modify the protocol so that also the weights remain hidden from the media-
tors. To do that, instead of publishing the vector of weights w (as done in
Line 1 of Protocol 4), Alice would distribute to the mediators (t,D)-shares
in them. Let [wn]d denote Md’s share in wn, d ∈ [D], n ∈ [N ]. Then, in
Sub-protocol 5, Line 2 will be replaced with [e]d ← [T ]d −

∑
n∈[N ][wn]d[bn]d.

As discussed in Section 2.1, the set {[e]1, . . . , [e]D} would be then a set of
(2t− 1, D)-shares in e. Hence, in Line 3, 2t− 1 mediators will collaborate in
recovering e. No further changes are required.

Protocol 4: Priced Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of

mediators, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}, and corresponding weights

wn ≥ 0, n ∈ [N ]; Bob has a set of selection indices
j1, . . . , jk ∈ [N ]; Alice and Bob have T ≥ 0.

1 Alice publishes the vector of weights w = (w1, . . . , wN).
2 Alice sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ′]d.
4 forall d ∈ [D] do
5 Md computes [e]d ← [T ]d − [T ′]d.
6 The mediators use any t shares out of {[e]1, . . . , [e]D} to reconstruct

e = T − T ′.
7 if e ̸= 0 then Abort.
8 Alice, Bob and the mediators execute Protocol 3 in which Lines

11-15 are replaced with Sub-protocol 5.

Output: Bob gets {mj1 , . . . ,mjk} iff
∑k

i=1 wji ≤ T .

4.3 Generalized Oblivious Transfer

Ishai and Kushilevitz [11] presented an extension of OT called Generalized
Oblivious Transfer (GOT). As in the the basic version of OT, Definition 2,
we consider a setting with two parties, Alice and Bob. Alice has a set of N
messages, m1, . . . ,mN , that can be viewed as elements in a finite field Zp.
Bob wishes to learn a subset of those messages, according to some retrieval
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Sub-protocol 5: Priced OT: verifying that
∑k

i=1wji ≤ T .

1 forall d ∈ [D] do
2 Md computes [e]d ← [T ]d −

∑
n∈[N ] wn[bn]d.

3 The mediators use any t shares out of {[e]1, . . . , [e]D} to
e = T −

∑
n∈[N ]wnbn.

4 if e < 0 then Abort.

policy. In OTN
k , the policy restricted Bob to learn any subset of at most k

messages. In GOT the policy is extended as described below.

Definition 5. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
An access structure is a collection of subsets of U , A ⊆ 2U , which is monotone
decreasing in the sense that if B ∈ A and B′ ⊂ B then also B′ ∈ A. The
basis of A, denoted A0, is the collection of all maximal subsets in A; namely,
B ∈ A0 if B ∈ A and for every B ⊊ B′ ⊆ U , B′ /∈ A.

Bob is allowed to retrieve any subset of messages B ⊂ U provided that
B ∈ A. As before, Bob cannot learn any information on the complement set
of messages, U \B, while Alice must not learn any information on the subset
B that Bob chose to retrieve.

The distributed GOT protocol that we present here, Protocol 6, is based
on the GOT protocol that was presented in [19], and it invokes the OTN

k

protocol, Protocol 3. Protocol 6 is designed for the case of uniform bases,
namely, the case where all subsets in A0 have the same size, denoted k. The
case of non-uniform bases can be reduced to the case of uniform bases as
described in [19]. We refer the reader to [19] for a detailed description of the
simple reduction.

The protocol is based on secret sharing, as we proceed to explain. Let us
define the monotone increasing closure of A0 as follows:

Γ = Γ(A0) = {C ⊆ U : ∃B ∈ A0, B ⊆ C} . (2)

The collection Γ is monotone increasing, in the sense that if B ∈ Γ and
B ⊂ B′ ⊆ U , then also B′ ∈ Γ. Let Σ be a secret sharing scheme that
realizes Γ, in the following sense. It is a secret sharing scheme in which the
set of participants is the set U of N messages, and the access structure is
Γ. Given a secret s, the scheme Σ assigns a share sn to each message mn,
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n ∈ [N ], so that the shares of any subset in Γ reveal s while the shares of
any other subset reveal no information on s.

Protocol 6 starts with Alice selecting a secret s ∈ Zp (Line 1). Then she
computes corresponding shares in s according to the access structure Γ(A0)
(Line 2). Namely, if B = {mj1 , . . . ,mjk} ∈ A0 is a set of messages that Bob
is allowed to retrieve, the corresponding set of shares, {sj1 , . . . , sjk}, can be
used to reconstruct s; otherwise, those shares reveal no information on s.

Next, Alice generates random masks xn for all her messages and uses
them to perturb mn into m′

n, n ∈ [N ]. Then, she packs those perturbed
messages together with the corresponding secret shares into m′′

n, n ∈ [N ]
(Lines 3-6). She then proceeds to distribute to the mediators (t,D)-shares
in the secret s as well as in the masks xn, n ∈ [N ] (Lines 7-9).

The core of the protocol is in Line 10: here, Alice and Bob engage in
the distributed OTN

k protocol where Bob chooses to learn m′′
n for all n ∈

{j1, . . . , jk}. Note that this protocol takes places over the field Zq whose
size is twice that of Zp, since Bob retrieves here a pairing of the (perturbed)
messages and the corresponding secret shares.

In the reminder of the protocol Bob retrieves the masks that would enable
him to extract the messages mn from m′′

n for all n ∈ {j1, . . . , jk}. First, he
decouples sn from m′

n for all k messages he chose (Lines 11-13). Using the
secret shares sn, n ∈ {j1, . . . , jk}, he reconstructs sB := s according to the
reconstruction function of the secret sharing scheme Σ (Line 14). He then
distributes to the mediators (t,D)-shares in sB (Line 15). The mediators
proceed to verify that sB = sA = s without actually recovering s (Lines
16-17). If the difference e = sA− sB is zero, then Bob had retrieved a subset
of k messages that he was allowed to retrieve. In that case, the mediators
send him shares in all random masks; Bob reconstructs only the relevant
random masks and then recovers the k messages of his choice (Lines 19-21).
If, however, e ̸= 0 then Bob failed to prove that he attempted retrieving an
allowed subset of messages; in that case the protocol aborts (Line 23).

We note that Protocol 6 offers almost perfect privacy. Bob may attempt
guessing the value of s ∈ Zp. If he succeeds (in negligible probability of 1/p)
he may be able to learn any subset of k messages. However, if he fails, the
mediators would infer that he attempted cheating and could refuse to engage
in further attempts.

Few comments are in order before we proceed:
1. For the sake of simplicity, we assumed that the access structure Γ(A0),

Eq. (2), is ideal in the sense that there exists a secret sharing scheme Σ that
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realizes it, in which all secret shares s1, . . . , sN are taken from the same field
Zp as the secret s. In cases where Γ(A0) is not ideal, or in cases where Γ(A0)
is ideal, but the selected secret sharing scheme Σ is not ideal1, then the shares
s1, . . . , sN cannot be taken from Zp. Assume that in such a case all shares
can be embedded in Zr for some prime r ≥ p. Then Protocol 6 works exactly
as described, where q is a prime greater than p · r.

2. Note that Alice performs secret sharing on s in two different places in
Protocol 6 and in two entirely different ways. In Line 2, Alice secret-shares s
among the set of participants U = {m1, . . . ,mN} where the access structure
is Γ; the secret sharing scheme here is Σ. Later on, in Line 7, Alice secret-
shares the same value s among the set of participants {M1, . . . ,MD}, i.e.,
the mediators, where the access structure is a simple t-out-of-D threshold
access structure and t is as defined in Eq. (1); the secret sharing scheme here
is the standard Shamir threshold secret sharing scheme [17]. The purpose
of the first secret sharing is to ensure that Bob can retrieve only subsets of
k messages from A0. The purpose of the second secret sharing scheme is
to enable the mediators to verify that the value of s that Alice used equals
the value of s that Bob sends to them, without actually knowing s. (In a
simpler implementation, Alice could have sent the value of s to the mediators,
without secret sharing. But then if Bob is able to corrupt a single mediator,
he could get from that mediator the value of s and then Bob would be able to
learn any subset of k messages. That is something that we prevent in Protocol
6 which is secure under the assumption that the majority of mediators are
honest.)

3. As noted already in Section ??, Alice and Bob do not need to be
active at the same time. For example, in the case of Generalized OT, Alice
can complete her part — Lines 1-9 in Protocol 6 and the relevant part of
Protocol 3 — and then go offline; only when the need arises, Bob can initiate
the completion of Protocol 3 and the completion of Protocol 6 (Lines 11-23).
The same holds also for Priced OT and OTN

k . When Alice is a server that
serves many “Bob” clients, Alice may complete her part and then let the
mediators attend to the request of any future client Bob.

1It is possible that a non-ideal secret sharing scheme could be simpler and easier to
implement than an equivalent ideal secret sharing scheme that realizes the same access
structure.
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Protocol 6: Generalized Oblivious Transfer
Parameters: p, q - two primes where q > p2, N - number of

messages, D - number of mediators, t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN} ⊂ Zp and an access structure

A on U , with a k-uniform basis A0; Bob has indices
1 ≤ j1 < . . . < jk ≤ N , where B := {mj1 , . . . ,mjk} ∈ A0.

1 Alice selects uniformly at random a secret s ∈ Zp.
2 Alice computes shares {s1, . . . , sN} ⊂ Zp in s using a secret sharing

scheme Σ that realizes the access structure Γ(A0) on U .
3 forall n ∈ [N ] do
4 Alice selects independently at random xn ∈ Zp.
5 Alice defines m′

n = mn + xn mod p.
6 Alice sets m′′

n = m′
n + p · sn ∈ Zq.

7 Alice distributes to the mediators (t,D)-shares in sA := s; Md’s
share is denoted [sA]d, d ∈ [D].

8 forall n ∈ [N ] do
9 Alice sends to Md, d ∈ [D], a (t,D)-share in xn, denoted [xn]d.

10 The parties execute Protocol 3 so Bob gets B := {m′′
j1
, . . . ,m′′

jk
}.

11 forall n ∈ {j1, . . . , jk} do
12 Bob computes m′

n = m′′
n mod p.

13 Bob computes sn = (m′′
n −m′

n)/p.

14 Bob recovers sB := s from {sn : n ∈ {j1, . . . , jk}} using the
reconstruction function of the secret sharing scheme Σ.

15 Bob distributes to the mediators (t,D)-shares in the secret sB that
he had computed above; Md’s share is denoted [sB]d, d ∈ [D].

16 Md, for all d ∈ [D], computes [e]d = [sA]d − [sB]d.
17 The mediators recover e := sA − sB from any t shares out of
{[e]d : d ∈ [D]}.

18 if e = 0 then
19 t of the mediators send to Bob their vectors of shares

([x1]d, . . . , [xN ]d), d ∈ [D].
20 Bob recovers from those vectors the masks xn, n ∈ {j1, . . . , jk}.
21 Bob computes mn = m′

n − xn mod p for all n ∈ {j1, . . . , jk}.
22 else
23 Abort

Output: Bob gets mj1 , . . . ,mjk .
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4.3.1 Exemplifying GOT for compartmented message sets

Assume that the set of messages, U = {m1, . . . ,mN}, is split into r disjoint
subsets, called compartments,

U =
r⋃

i=1

Ui , Ui ∩ Uj = ∅ , 1 ≤ i < j ≤ r .

Bob is allowed to retrieve messages only from one of those compartments.
Hence, the access structure here is

A = {B ⊂ U : |B| ⊆ Ui for some 1 ≤ i ≤ r} .

The basis of this access structure is A0 = {Ui : 1 ≤ i ≤ r}, and its monotone
increasing closure is

Γ = Γ(A0) = {B ⊂ U : B ⊇ Ui for some 1 ≤ i ≤ r} . (3)

The access structure in Eq. (3) is a simple case of a compartmented ac-
cess structure [3, 20], namely, one in which the participants (messages) are
split into disjoint compartments, and all participants within the same com-
partment play the same role in the access structure. The access structure
Γ can be easily realized as follows. (What follows is the computation that
Alice does in Line 2 of Protocol 6 in case her access structure is as described
above.)

Alice selects a random secret s ∈ Zp and then, for each compartment Ui,
1 ≤ i ≤ r, she will assign to all messages in that compartment random secret
shares that add up to s. Specifically, if Ui = {mjh : 1 ≤ h ≤ |Ui|} then Alice
selects uniformly at random |Ui|−1 secret shares, sjh ∈ Zp, 1 ≤ h ≤ |Ui|−1,

and then she sets sj|Ui|
= s−

∑|Ui|−1
h=1 sjh mod p.

5 Oblivious polynomial evaluation

Here we consider the distributed versions of the oblivious polynomial evalu-
ation problem [14] and its multivariate extension [22].

5.1 Univariate polynomials

The problem of oblivious evaluation of univariate polynomials is defined as
follows.
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Definition 6. (OPE) Assume that Alice has a polynomial f(x) =
∑N

n=0 cnx
n

of degree at most N over the field Zp, while Bob has a value in the field
α ∈ Zp. They wish to enable Bob to learn f(α), and nothing else on f , while
Alice remains oblivious to α.

We propose here a solution that is based on DSP (Section 3). In our
solution (Protocol 7) Alice sets a vector of the polynomial coefficients a =
(c0, . . . , cN), while Bob sets a vector of the powers of his secret value α,

b = (α0, α1, . . . , αN) . (4)

With that setting of the two vectors, their scalar product a · b equals f(α).
Hence, OPE can be reduced to DSP. However, while Alice’s vector a can be
any N -dimensional vector, Bob’s vector b must be of the form as in Eq. (4),
for some field element α. Namely, the DVV sub-protocol (Definition 3) must
ascertain that b ∈ W := {(α0, α1, . . . , αN) : α ∈ Zp}, while if b is indeed
in W , the DVV sub-protocol must not leak any further information beyond
that.

Our OPE protocol is presented in Protocol 7. First, Alice and Bob set
their secret vectors a and b to be submitted to the secure DSP computation
(Lines 1-2). Then, they distribute to the mediators (t,D)-secret shares in
those vectors (Lines 3-5). Note that the first entry in Bob’s vector is always 1.
Hence, there is no need for Bob to generate and distribute shares in that entry.
Instead, each mediator Md, d ∈ [D], can internally set [b1]d = 1. To keep our
pseudo-code simple we retain the description of the shares’ generation and
distribution in Lines 3-5, but the execution of Line 5 for n = 1 will be as
described above.

The DVV sub-protocol takes place in Lines 6-9. If the validation fails, the
protocol aborts. We elaborate below on the details of this computation. If the
validation passes successfully, the mediators proceed to compute (2t− 1, D)-
shares in the scalar product (that equals f(α)) and send those shares to Bob
only (Lines 10-12). Bob proceeds to reconstruct the required output value
(Line 13).

The DVV in Lines 6-9 is based on the observation that b is of the form
as in Eq. (4) if and only if the value ω that is computed in Line 7 equals 0
for every 3 ≤ n ≤ N + 1. In order to compute ω, each mediator computes

[c]d := [bn−1]d · [b2]d − [bn]d . (5)
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Protocol 7: Oblivious Polynomial Evaluation

Parameters: p - field size, N - the degree of the secret polynomial
f , D - number of mediators, t = ⌊(D + 1)/2⌋.

Inputs: Alice has a secret polynomial f(x) =
∑N

n=0 cnx
n over Zp;

Bob has a secret value α ∈ Zp.
1 Alice sets a = (c0, . . . , cN) := (a1, . . . , aN+1).
2 Bob sets b = (α0, α1, . . . , αN) := (b1, . . . , bN+1).
3 forall n ∈ [N + 1] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.

6 forall 3 ≤ n ≤ N + 1 do
7 The mediators compute ω := bn−1b2 − bn.
8 if ω ̸= 0 then
9 Abort

10 forall d ∈ [D] do
11 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

12 Md sends sd to Bob.

13 Bob uses any 2t− 1 shares out of {s1, . . . , SD} to reconstruct
a · b = f(α).
Output: Bob gets f(α).

In view of our discussion in Section 2.1, the set {[bn−1]d · [b2]d : d ∈ [D]} is
a set of (2t − 1, D)-shares in bn−1b2. In addition, as {[bn]d : d ∈ [D]} is a
set of (t,D)-shares in bn, it is also a set of (2t − 1, D)-shares in bn (because
t ≤ 2t− 1). Hence, by the affinity of secret sharing, the set {[c]d : d ∈ [D]},
where [c]d is as defined in Eq. (5), is a set of (2t − 1, D)-shares in ω =
bn−1b2− bn. Therefore, the mediators can use any 2t− 1 shares from that set
in order to recover ω. If the recovered value is zero, then they had validated
that w = bn−1b2 − bn = 0 without learning any further information on b.
Otherwise, they infer that b is not of the form as in Eq. (4) so they abort.

Protocol 7 provides perfect privacy for Alice and Bob due to the assump-
tion of honest majority for the set of mediators. We note that if Bob is
dishonest and submits an illegal vector b to the protocol, the mediators will
detect that by running into a nonzero value ω. In that case, ω reveals the
value of bn−1b2 − bn, for some index 3 ≤ n ≤ N + 1. Therefore, the medi-
ators reveal in that case some information on b beyond the fact that it is
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not in the form of Eq. (4). Hence, as we have already noted earlier, the
DVV sub-protocol offers perfect privacy only for honest parties, as indeed
intended.

5.2 Multivariate polynomials

Here we consider the problem of oblivious evaluation of multivariate polyno-
mials. We begin by defining multivariate polynomials (Definitions 7 and 8)
and then define the corresponding MPC problem (Definition 9).

Definition 7. (Monomial) Let Zp be a finite field , x = (x1, . . . , xk) be a
k-dimensional vector over Zp and j = (j1, . . . , jk) be a k-dimensional vector

of nonnegative integers. Then the monomial xj is defined as xj :=
∏k

i=1 x
ji
i .

Definition 8. (Multivariate Polynomial) let Zk
+ := {j = (j1, . . . , jk) : ji ∈

Z+ = {0, 1, 2, . . .} : 1 ≤ i ≤ k} be the set of all k-tuples of nonnegative
integers, and Zk,N

+ be the subset of Zk
+ consisting of all tuples of which the

sum of components is at most N , i.e: Zk,N
+ := {j ∈ Zk

+ : |j| :=
∑k

i=1 ji ≤
N}. An N-degree k-variate polynomial f(x) over the field Zp, where x =
(x1, . . . , xk) ∈ Zk

p, is defined as:

f(x) =
∑
j∈Zk,N

+

aj · x
j , aj ∈ Zp . (6)

Definition 9. (OMPE) Assume that Alice has an N-degree multivariate
polynomial f(x) = f(x1, . . . , xk), while Bob has a point α = (α1, . . . ,αk) ∈
Zk

p. They wish to enable Bob to learn f(α), and nothing else on f , while
keeping Alice oblivious to α.

Similarly to our OPE protocol, Protocol 7, also OMPE can be solved by
reducing it to DSP, with the needed prior validations. The vector that Alice
will submit to the protocol consists of the coefficients of her polynomial,
a = (aj : j ∈ Zk,N

+ ). The vector that Bob will submit to the protocol is the

following:

b = (bj : j ∈ Zk,N
+ ) , where bj := αj . (7)

It is easy to see that the dimension of these vectors is
(
N+k
k

)
.

First, it is necessary to agree upfront on an ordering of Zk,N
+ so that in the

scalar product between the two vectors, each power of α will be multiplied by
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the corresponding polynomial coefficient. We suggest ordering the set Zk,N
+

by arranging its monomials into N+1 tiers, as follows. The 0th tier would be
T0 := Zk,0

+ , and then the nth tier, n = 1, . . . , N , would be Tn := Zk,n
+ \Z

k,n−1
+ ;

namely, the nth tier Tn consists of all monomials of degree exactly n ∈
{0, 1, . . . , N}. The order within each tier would be lexicographical.

Protocol 8: Oblivious Multivariate Polynomial Evaluation

Parameters: p - field size, k-number of variables, N - the degree of
the secret polynomial f , D - number of mediators,
t = ⌊(D + 1)/2⌋.

Inputs: Alice has a secretN -degree k-variate polynomial f(x), Eq.
(6); Bob has a secret point α = (α1, . . . ,αk) ∈ Zk

p.

1 Alice sets a = (aj : j ∈ Zk,N
+ ), according to the ordering convention.

2 Bob sets b = (bj = αj : j ∈ Zk,N
+ ), according to the ordering

convention.

3 forall j ∈ Zk,N
+ do

4 Alice sends to Md, d ∈ [D], a (t,D)-share in aj, denoted [aj]d.

5 Bob sends to Md, d ∈ [D], a (t,D)-share in bj, denoted [bj]d.

6 forall 2 ≤ n ≤ N do
7 forall j ∈ Tn do
8 Select a monomial h ∈ Tn−1 such that j = h+ ei for some

1 ≤ i ≤ k, where ei is the i-th unit vector.
9 The mediators compute ω := bh · bei

− bj.

10 if ω ̸= 0 then
11 Abort

12 forall d ∈ [D] do

13 Md computes sd ←
∑

j∈Zk,N
+

(
[aj]d · [bj]d

)
.

14 Md sends sd to Bob.

15 Bob uses any 2t− 1 shares out of {s1, . . . , SD} to reconstruct
a · b = f(α).
Output: Bob gets f(α).

Protocol 8 starts with Alice and Bob setting their inputs vectors a and b
in accord with the ordering convention (Lines 1-2). Then they distribute to
the mediators (t,D)-shares in them (Lines 3-5). Here too we observe that the
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first entry in b, i.e. bj for j = (0, . . . , 0), equals 1 (see Eq. (7)). Therefore,

the mediators can set on their own corresponding shares. Hence, in Line 5
for j = (0, . . . , 0) Bob does not generate and distribute shares; instead, each
mediator Md, d ∈ [D], sets [bj]d = 1.

After completing the distribution of shares, the mediators perform the
relevant DVV sub-protocol in order to validate that the secret input vector
b is of the form as in Eq. (7) (Lines 6-11). It is executed similarly to the
validation in Protocol 7. To that end we state the following lemma, which
we prove below.

Lemma 10. The vector b = (bj : j ∈ Zk,N
+ ), where bj = 1 for j = (0, . . . , 0),

is of the form as in Eq. (7) if and only if ω = 0 in all stages of the validation
loop in Lines 6-11 of Protocol 8.

In the final stage of Protocol 8, the mediators compute (2t− 1, D)-shares
in the scalar product and send them to Bob (Lines 12-14) who uses them in
order to recover the scalar product (Line 15).

Proof of Lemma 10. Assume that b is as in Eq. (7). Then for every

multi-index j ∈ Zk,N
+ , the corresponding entry in b is bj := αj. Hence, for

any 2 ≤ n ≤ N and for any j ∈ Tn, there exists at least one monomial
h ∈ Tn−1 such that j = h + ei, for some 1 ≤ i ≤ k. Let us compare the

monomial bj := αj with the monomial bh := αh. The two multi-indices

j and h equal in all entries except for the ith entry, where ji = hi + 1.
Therefore,

bj := αj = αh · αi = bh · bei
.

Hence, such a vector will pass all stages of the DVV in Lines 6-11.
Assume next that b does not comply with the form as in Eq. (7). That

means that
b = (1, α1, . . . , αk, bj : 2 ≤ |j| ≤ N) ,

where there exists at least one entry bj, where 2 ≤ |j| ≤ N , that is not of the

form as in Eq. (7). Let us focus on the first multi-index j that is not of that
form. Namely, j is the first multi-index for which

bj ̸= αj , (8)
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where α = (α1, . . . , αk). Assume that |j| = n ∈ [2, N ] and let i be any index
between 1 and k such that j = h+ ei for some h ∈ Tn−1. By the minimality
of j it means that

bh = αh . (9)

From Eqs. (8) and (9) it follows that the validation check in Lines 9+10
would fail for those multi-indices. That completes the proof. 2

Example. Let us illustrate the validation process in the case where
k = 2 (two-variate polynomials) and N = 2 (degree two). Bob is expected
to submit here vectors of the form

b = (b(0,0), b(1,0), b(0,1), b(2,0), b(1,1), b(0,2)) = (1, α1, α2, α
2
1, α1α2, α

2
2) .

Since the first entry is always 1, and the next two entries can be anything,
validation is applied only on the last three entries — b(2,0), b(1,1), and b(0,2):

• To validate b(2,0), we observe that there is only one way to represent
the multi-index j = (2, 0) as a sum h + ei, namely, (2, 0) = (1, 0) +
(1, 0). Hence, the DVV sub-protocol checks whether b(2,0) = b(1,0) ·b(1,0).
Therefore, validation of this entry succeeds if and only if b(2,0) = α2

1.

• Similarly, b(0,2) is validated if and only if b(0,2) = α2
2.

• To validate b(1,1), we observe that j = (1, 1) = h + ei with h = (1, 0)
and ei = (0, 1) or with h = (0, 1) and ei = (1, 0). In either case, the
DVV sub-protocol checks whether b(1,1) = b(1,0) · b(0,1) = α1 · α2.

As another example, let us consider the case k = 3 and N = 8. In that
case the two vectors a and b are of dimension

(
8+3
3

)
= 165. To validate bj

with j = (3, 1, 4) we observe that j can be expressed as j = h + ei in three
ways: h = (2, 1, 4) and ei + (1, 0, 0), or h = (3, 0, 4) and ei + (0, 1, 0), or
h = (3, 1, 3) and ei+(0, 0, 1). The DVV sub-protocol chooses arbitrarily one
of those sums and then it checks whether bj = bh · bei

.

6 Communication complexity

Here we discuss the communication complexity of our protocols. We measure
the complexity by counting field (Zp) elements, where each field element can
be represented by ⌈log p⌉ bits,

We separate the overall communication traffic to three parts:
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• ComAM: Messages sent between Alice and the mediators.

• ComBM: Messages sent between Bob and the mediators.

• ComMM: Messages sent among the mediators.

For Protocol 1 for the DSP problem we have ComAM = ComBM = (N +
1)D, since Alice and Bob send to each of the D mediators shares in each
of the N entries in their vectors and, at the end, each mediator sends a
single share back to Alice and Bob. As in this protocol the mediators do not
communicate among themselves, we have ComMM = 0.

The communication costs of Protocol 2 for the DOTN
1 problem are as

follows: ComAM = ND (Lines 3-4), ComBM = (N+1)D (Lines 3+5 and Lines
16+18). As for the communication between the mediators, it is executed in
the DVV sub-protocol. We have here ND(D− 1) due to the first part in the
validation (Lines 6-10) and D(D − 1) due to the second part (Lines 11-15);
hence, in total we have ComMM = (N + 1)D(D − 1).

We move on to Protocol 3 for the DOTN
k problem. Its communication

costs are as in Protocol 2 with one difference: at the end, Bob receives from
each mediator N field elements and not just one. Hence, the costs of this
protocol are:

ComAM = ND, ComBM = 2ND, ComMM = (N + 1)D(D − 1) . (10)

We note that the DOTN
k problem could also be solved by invoking Protocol 2

k times, where Alice’s part has to be executed just once. The communication
costs of this alternative course of action are:

ComAM = ND, ComBM = k(N +1)D, ComMM = k(N +1)D(D− 1) . (11)

Comparing Eq. (11) to Eq. (10) we see that such an alternative course of
action is less efficient than Protocol 3 for every k ≥ 2.

Next, we consider Protocol 4 for the problem of priced OT. Its commu-
nication costs are exactly as those of Protocol 3, with the exception of the
additional Lines 1-7. We assume that the weights are publish knowledge, so
we do not include them in our costs. Alice has to send D shares in T and
so does Bob, so that adds the term D to both ComAM and ComBM. The
computation in Line 6 adds D(D−1) to ComMM. Hence, we end up with the
following costs:

ComAM = (N + 1)D, ComBM = (2N + 1)D, ComMM = (N + 2)D(D − 1) .
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Next, we consider the general OT protocol, Protocol 6. In the heart of
that protocol (Line 10), the parties execute OTN

k (Protocol 3) over messages
{m′′

1, . . . ,m
′′
N} in Zq. Since q ≈ p2, the communication costs of this invocation

of Protocol 3 are twice those in Eq. (10). In addition, Alice sends to the
mediators (N + 1)D shares in Zp (Lines 7-9), Bob sends to the mediators
D shares (Line 15) and receives from them tN ≤ DN shares (Line 19), and
the mediators send among themselves D(D − 1) shares (Line 17). Adding
up everything yields the following costs:

ComAM = (3N +1)D, ComBM = (5N +1)D, ComMM = (2N +3)D(D− 1) .

We proceed with Protocol 7 for the OPE problem. In Lines 3-5 both
Alice and Bob send to the mediators (N + 1)D shares. Then, in the DVV
sub-protocol, the mediators send among themselves D(D− 1) field elements
N − 1 times. Finally, the mediators send to Bob D field elements (Lines
10-12). The overall communication costs are therefore

ComAM = (N + 1)D, ComBM = (N + 2)D, ComMM = (N − 1)D(D − 1) .

Protocol 8 is analyzed similarly, with two differences. Here, the dimension
of the vectors is

(
N+k
k

)
, and the number of entries in Bob’s vector that need

to be verified in the DVV sub-protocol is
(
N+k
k

)
− k− 1. Hence, we arrive at

the following costs,

ComAM = NkD, ComBM = (Nk + 1)D, ComMM = (Nk − k − 1)D(D − 1) ,

where Nk :=
(
N+k
k

)
.

The communication costs of all protocols are summarized in Table 1.
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Problem Protocol ComAM ComBM ComMM

SP 1 (N + 1)D (N + 1)D 0

OTN
1 2 ND (N + 1)D (N + 1)D(D − 1)

OTN
k 3 ND 2ND (N + 1)D(D − 1)

Priced OT 4 & 5 (N + 1)D (2N + 1)D (N + 2)D(D − 1)

General OT 6 (3N + 1)D (5N + 1)D (2N + 3)D(D − 1)
OPE 7 (N + 1)D (N + 2)D (N − 1)D(D − 1)

OMPE 8 NkD (Nk + 1)D (Nk − k − 1)D(D − 1)

Table 1: Communication costs of all distributed protocols with D mediators.
N denotes the dimesion of the vectors in SP, the number of messages in all
OT protocols, and the degree of the polynomials in the OPE and OMPE
protocols. The parameter k in Protocol 8 denotes the number of variables,
while Nk =

(
N+k
k

)
.

7 Experiments

7.1 Implementation details

We implemented our protocols in Java on a Lenovo Ideapad Gaming 3 laptop,
powered by an AMD Ryzen 7 5800H processor and 16GB of RAM. The
operating system was Windows 11 64-bit, and the environment was Eclipse-
Workspace. A 64-bit prime number p was chosen at random for the size of
the underlying field Zp. To enable computations modulo such prime, we used
the BigInteger Java class.

All experiments were conducted on randomly generated vectors (or sets
of messages or polynomials). Each experiment was repeated ten times and
the average runtimes are reported. The standard deviation is omitted from
the graphical display of our results since it is barely noticeable.

7.2 Results

In the first experiment we tested our basic protocol that solves DSP, Protocol
1. Figure 1 shows the runtimes for Alice and Bob and the average runtimes
for the mediators as a function of N (the dimension of the two vectors).
Those runtimes grow linearly in N . Figure 2 displays those runtimes as a
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function of D. As expected, the runtime of Alice and Bob grows linearly with
D (as they need to compute O(D) shares in their inputs) while the mediators’
runtime is not affected by D and only slightly fluctuates randomly between
50 and 85 milliseconds for all tested values of D.

Figure 1: Runtimes (milliseconds) for Protocol 1 (DSP), as a function of
log10(N), for D = 7. The left plot shows the runtimes for Alice and Bob; the
right plot shows the average runtimes for the mediators. The runtimes are
presented on a logarithmic scale.

Figure 2: Runtimes (milliseconds) for Protocol 1 (DSP), as a function of
D, for N = 106. The left plot shows the runtimes for Alice and Bob; the
right plot shows the average runtimes for the mediators. The runtimes are
presented on a linear scale.

In the next experiment we tested Protocol 3 that solves the OTN
k prob-

lem. Here we focus only on the mediators, since Bob’s computations in that
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protocol are the same as in Protocol 1, while Alice’s computations are the
same as in the beginning of Protocol 1. (Recall that in Protocol 3 the output
of the scalar product goes only to Bob, so Alice has nothing to do beyond
the initial sharing of her vector.) Hence, Bob’s runtimes in Protocol 3 are
just as they were in Protocol 1, for the same setting of N and D (the setting
of k has no effect on Bob’s runtime), while Alice’s runtimes in Protocol 3 are
smaller than her runtimes in Protocol 1 for the same setting of N and D.

Turning our attention to the mediators’ runtimes, their average (over all
runs of the protocol and over all mediators) are shown in Figure 3. The
dependence on N is linear. As for D, while in Protocol 1 the mediators’
runtimes do not depend on D, here they do depend on D, linearly, due to
the DVV part of the protocol. Finally, their runtime is not affected by k, as
can be seen in the last plot in Figure 3.
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Figure 3: Average runtimes (milliseconds) for the mediators in Protocol 3
(OTN

k ). Top left: runtimes, on a logarithmic scale, as a function of log10(N),
for D = 7 and k = 10. Top right: runtimes as a function of D, for N =
1000000 and k = 10. Bottom: runtimes as a function of k, for N = 1000000
and D = 7.

Next, we consider the OMPE protocol — Protocol 8. We ran that proto-
col with random polynomials of degrees N ∈ {5, 10, 20, 30, 40, 50}, where the
number of variables was k = 1, 2, 3 — see Figure 4. Note that when we set
k = 1 in Protocol 8 it coincides with Protocol 7. The shown runtimes grow
linearly with

(
N+k
k

)
, since that is the size of the two vectors in the underlying

scalar product.
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Figure 4: Runtimes (milliseconds) for Protocol 8 (OMPE)), as a function
of N , the polynomial degree, for k = 1 (top), k = 2 (middle), and k = 3
(bottom). The left plots show the runtimes for Bob; the right plots show the
average runtimes for the mediators.
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Figure 5: Average runtimes (milliseconds) for the mediators in Protocol 4
(POT)). Left: runtimes as a function of N , for T = 100 and D = 7; the
runtimes are presented on a logarithmic scale. Right: runtimes as a function
of D, for T = 100 and N = 1000000.

We turn our attention to the POT protocol — Protocol 4. Like in Protocol
3, we ignore the runtimes of Alice and Bob and focus on the mediators’
average runtime and demonstrate its linear dependence on N and on D, see
Figure 5.

Finally, we tested the GOT protocol, Protocol 6, with the access struc-
ture that we described in Section 4.3.1. In all of our experiments we used
compartments of equal size, |Ui| = 10, 1 ≤ i ≤ r. The runtimes for Bob and
the mediators, as a function of N and D, are reported in Figures 6 and 7.
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Figure 6: Runtimes (milliseconds) for Protocol 6 (GOT)), in the case of
compartmented access structures as a function of N , for D = 7. The left
plot shows the runtimes for Bob; the right plot shows the average runtimes
for the mediators. The runtimes are presented on a logarithm scale.

Figure 7: Runtimes (milliseconds) for Protocol 6 (GOT)), in the case of
compartmented access structures as a function of D, for N = 1000000. The
left plot shows the runtimes for Bob; the right plot shows the average run-
times for the mediators. The runtimes are presented on a linear scale.
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Abstract. Wireless interference between flows in wireless networks result in de-
graded performances when data signals from different flows can mutually inter-
fere with each other along their routes. Our goal is to develop a routing algo-
rithm in wireless interference networks to maximize the network utility. How-
ever, achieving an optimal solution is computationally demanding due to the ex-
tensive state and action spaces involved. To address this challenge, we propose a
Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals
(DIAMOND) algorithm. DIAMOND is designed to support a hybrid centralized-
distributed implementation, which aligns with the characteristics of 5G and be-
yond technologies deploying centralized units. In the centralized stage, a novel
graph neural network (GNN) reinforcement learning (RL) routing agent com-
putes the multi-flow transmission strategy. Subsequently, in the distributed stage,
performance enhancements are achieved through innovative distributed learning
updates. Theoretical analysis proves that DIAMOND converges to the optimal
routing strategy as time increases. Simulation results demonstrate the superior
performance of DIAMOND compared to existing methods.

Keywords: Wireless Networks · distributed learning · deep reinforcement learn-
ing (DRL) · graph neural network (GNN).

1 Introduction

The rapid advancement of communication network technology in 5G and beyond has
been accompanied by a growing demand for wireless communication services. How-
ever, one of the main challenges that persists is the scarcity of available spectrum, which
hampers the ability to meet this increasing demand. As a result, developing efficient
algorithms for data transmission in wireless networks becomes crucial in effectively
utilizing the limited spectral resources.

In recent years, significant improvements have been made by developing machine
learning algorithms for managing flow transmissions in order to tackle uncertainties in
⋆ A full version of this paper was submitted to IEEE Transactions on Wireless Communications

and is available as a pre-print at [1].
This work was supported by the Israel Ministry of Economy under the Magnet consortium
program.
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random channel and network conditions. Several studies [2–12] have analyzed the long-
term reward optimization of users in the network using a multi-armed bandit learning
framework. The learning strategies have included various methods, such as reinforce-
ment learning and upper confidence bound (UCB)-based algorithms [13–15], as well as
deep reinforcement learning that uses deep neural networks in the optimization [16–19].
While most of these online learning methods have focused on single-hop transmissions,
in this paper we apply the learning to multi-hop link states to enable efficient path se-
lection for flow transmission.

Our objective is to devise a multi-flow transmission strategy that effectively routes
data flows across wireless interference networks, all while maximizing a specific net-
work utility metric. Unlike deterministic (e.g., [20, 21]) or stochastic random (e.g.,
[22–26]) link weight approaches that are commonly used in certain scenarios, these
methods do not hold validity in wireless interference networks. This is primarily due
to the interference caused by data signals from different flows, which impact the link
capacities along their respective routes. Consequently, finding an optimal solution to
this problem often involves computationally expensive tasks due to the large state and
action spaces associated with wireless interference networks.

2 Problem Statement

We represent the wireless communication network using a directed connected graph
G = (V,E), where V denotes the set of nodes (i.e., users) in the network, and E rep-
resents the set of edges. Given N flows, we define the selected route vector for all
flows as σ ≜ (σ1, σ2, ..., σN), and the set of all allowed routes for flow n as An =

{φn
1 , φ

n
2 , . . . , φ

n
Kn
}. Additionally, we consider a bounded utility function un(σ) for

flow n, such as the achievable rate or a monotonically increasing function based on the
achievable rate. It is important to note that the utility of flow n depends not only on its
selected route but also on the selected routes of other flows that may interfere with it.

The objective is to find a multi-flow transmission path vector σ that solves the net-
work utility maximization (NUM) problem [21] defined as:

σ∗ = argmax
{σn∈An}Nn=1

N

∑

n=1
un(σ). (1)

In wireless networks, the interference between data signals from different flows
affects the link capacities, resulting in reduced achievable rates. The achievable rate
of user n is influenced by the bandwidth of the bottleneck link Bℓ and the signal-to-
interference-plus-noise ratio (SINR) at the receiver of link ℓ. Further details can be
found in [1].

The combinatorial optimization problem of finding the optimal multi-flow trans-
mission path vector to solve (1) is known to be NP-hard [27]. The exponential number
of possible route allocations makes it impractical to solve optimally using brute-force
methods. Therefore, there is a need for computationally-efficient algorithms. Addition-
ally, even for small networks, computing the optimal allocation is often costly. Hence,
traditional learning-based approaches using supervised models are not feasible. In the
next section, we present a novel algorithm that overcomes these limitations to solve (1).
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Fig. 1: An overview of the proposed DIAMOND framework: (a) A construction of the
search space for flow n for n = 1,2, ...,N . (b)-(e) Centralized GRRL module: (b) The
RL agent receives N flow demands, and the network state as link features. (c) The
network state is processed with a graph encoder GNN to produce an embedding for
each link as well as a global graph embedding. The flow demands and embedding are
processed by the path-embedding module that outputs an embedding for each of the
possible routing options. (d) The RL agent makes an allocation decision based on the
path embedding. (e) The transmission paths of all N flows are allocated at once to the
network. (f) Distributed NB3R module: Each flow updates its path allocation distribut-
edly, based on the NB3R policy, which refines the allocation.

3 The Proposed DIAMOND Algorithm

We introduce a novel algorithm, dubbed Dual-stage Interference-Aware Multi-flow Op-
timization of Network Data-signals (DIAMOND), which addresses the challenges of
multi-flow optimization in wireless networks. DIAMOND is designed to support a hy-
brid centralized-distributed implementation, aligning with the centralized unit deploy-
ments characteristic of 5G and beyond technologies. The centralized stage of DIA-
MOND utilizes a unique module called GRRL (Graph neural network Routing agent via
Reinforcement Learning) to compute the multi-flow transmission strategy. This mod-
ule, implemented on a centralized unit similar to OSPF [28], given the interference map
and flow demands, as given in 5G networks. By optimizing the network utility, GRRL
generates a path allocation vector, assigning a single route per flow. It employs a rein-
forcement learning (RL) approach, training a policy network based on a novel Graph
Neural Network (GNN) architecture. This captures the ability of GNN to efficiently
search the large search space and approximate well the optimal solution. It is designed
in a generic way that handles general parameter values, number of nodes, edges, and
flows. To avoid local maxima while dynamically update strategies, a distributed stage
called NB3R (Noisy Best-Response for Route Refinement) is incorporated. NB3R in-
troduces a novel module design where each source node asynchronously updates its
path in a probabilistic manner, aiming to approach the global solution of the Network
Utility Maximization (NUM) problem stated in Equation (1). An illustration of DIA-
MOND’s modules can be found in Figure 1. Detailed implementation of DIAMOND,
and theoretical convergence analysis to the optimal solution are provided in [1].
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Table 1: Algorithm comparison for various network configurations.

Average Flow Rates [Mbps] ↑ Max Delay [time-steps] ↓
N V E RB OSPF DQN+GNN DIAMOND (ours) RB OSPF DQN+GNN DIAMOND (ours)

100 200 300 0.611 2.061 9.937 17.239 314.2 372.1 339.9 113.8
70 70 140 1.887 4.201 20.597 30.594 179.2 147.7 155.5 60.7
30 10 45 18.553 20.21 52.57 77.689 18.8 24.2 26.1 10.8

4 Results

We present numerical examples to demonstrate the performance of the proposed DI-
AMOND algorithm across diverse wireless interference network environments. These
examples encompass different numbers of flow demands (N ), nodes (V ), and edges
(E).

In our simulations, all V network nodes are deployed randomly within a 1000m ×
1000m area. A random topology is generated by establishing E links, ensuring the
graph forms a single connected component. Flow demands (source, destination, and
packet load), link’s capacities and gains are randomly assigned.

The GRRL agent is initially trained on a small-scale problem with parameters
(N = 20, V = 10,E = 20) and subsequently fine-tuned on a larger-scale setting with
parameters (N = 30, V = 20,E = 30). To highlight the generalization capabilities of
the GNN and the adaptive NB3R algorithm, all testing results are obtained from dif-
ferent problem settings. Through these numerical examples, we aim to showcase the
versatility and effectiveness of the GNN-based DIAMOND approach.

We compared the following algorithms: (i) Random Baseline (RB): The random
baseline is a heuristic method that selects the best path allocation from 100 independent
trials of randomly chosen actions. (ii) Open Shortest Path First (OSPF) [28]: The popu-
lar OSPF protocol that employs the Dijkstra algorithm to route data through the shortest
path. (iii) DQN+GNN [29]: The recently proposed DQN+GNN algorithm that utilizes
a DRL algorithm based on the well-known offline-RL DQN [30] algorithm. For each
simulation experiment, we averaged the results over 10 independent random settings,
including flow demands and link capacities.

Table 1 presents the results for lightly-loaded networks with V = 2N and E = 1.5V
(line 1), moderately-loaded networks with V = N and E = 2V (line 2), and a scenario
with a higher ratio of nodes to edges (line 3). More extensive simulation results are pro-
vided in [1]. The results demonstrate that DIAMOND outperforms all other algorithms
in both average rate and packet delay across all scenarios, which represent different re-
alistic network configurations. These findings justify the application of DIAMOND in
5G topologies, characterized by dense networks with a large number of edges.
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The rising expenses associated with car ownership have driven individuals to seek more 

affordable alternatives, such as car rentals. However, conventional car rental services often 

come with high costs due to leasing company overhead expenses. Consequently, car sharing 

has emerged as a popular and cost-effective solution that not only reduces expenses but also 

promotes eco-friendliness by reducing the overall number of vehicles on the roads. 

Nonetheless, centralization and reliability remain persistent challenges in car-sharing 

implementation. 

To address these issues, we propose a decentralized crowd car sharing and renting platform 

called CrowdCarLink, leveraging blockchain technology's power. This innovative platform 

enables both individuals and leasing companies to rent out vehicles while securely recording 

the maintenance history of each vehicle on the blockchain. Within CrowdCarLink, garages 

are pivotal contributors, adding vehicle information in a reliable and immutable manner. By 

utilizing blockchain technology, our platform ensures transparency and fosters trust, 

effectively overcoming the limitations imposed by centralization. 

Our architectural design incorporates smart contracts which help streamline processes and 

facilitate seamless transactions within the platform.  

To demonstrate the feasibility of our approach, we have developed a prototype utilizing a 

private Ethereum blockchain with Proof of Authority (PoA) consensus. 

We believe that the architectural design and the practical solution presented here will play an 

integral role in shaping the future of smart transportation. By offering a cost-effective and 

efficient solution, our platform aims to benefit individuals and the environment alike, paving 

the way for a more sustainable and advanced transportation ecosystem. 
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Abstract. This paper explores the use of deep learning-driven steganog-
raphy for propagating malware covertly. Traditional antivirus systems
effectively detect and neutralize malware, but they struggle to identify
codes concealed within steganographic images. We propose an innovative
approach that leverages deep learning techniques to transform malware
into an image and embed it within a cover image. This technique allows
for the covert delivery of malware with minimal visible changes to the
cover image, enabling successful evasion of antivirus checks.
In our proposed methodology, we first develop a specialized neural net-
work model capable of transforming malware into image representations.
Once the cover image with embedded malware is created, we distribute
it to unsuspecting targets through various channels, such as online plat-
forms or social engineering tactics. When the target downloads or inter-
acts with the seemingly innocent cover image, the embedded malware
is extracted and executed on their system. This covert delivery method
bypasses traditional antivirus checks, allowing the malware to remain
undetected and potentially carry out its malicious activities. Combining
deep learning techniques, steganography, and covert delivery, our pro-
posed methodology presents a significant challenge for traditional an-
tivirus systems.

Keywords: cyber attack · machine Learning · adversarial strategy ·
hidden communication · malicious tactic

1 Introduction

The immense volume of data and resources available online has revolutionized
the speed of learning and coding. Consequently, many individuals, from students
to professional coders, often utilize code fragments found on the web, which can
be easily implemented on their personal devices. However, it’s crucial to tread
carefully when executing internet-sourced code to evade any potential hazards
linked to malevolent intentions. The matter intensifies when the code is surrep-
titiously embedded within an ostensibly harmless image. In such scenarios, the
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code remains invisible, and individuals may unknowingly execute the concealed
code, oblivious to its existence or potential risks.

Steganography, the craft of covertly embedding text within plain sight, can
potentially conceal malicious software within an array of file types, encompassing
images, audio files, or documents. The power of machine learning can be har-
nessed to augment the efficiency of such hidden malware, enabling the creation
of more advanced and elusive strategies.

In this study, we delve into a novel and potentially transformative appli-
cation of steganography: the use of a specially designed neural network model
to integrate malware within images, which can subsequently be extracted and
activated. This method introduces a fresh perspective in the ongoing fight for
cybersecurity, carrying substantial implications for identifying and preventing
digital threats.

Attack lifecycle

The lifecycle of how the attacker and its victim (the ‘user’) interact is illustrated
in Figure 1 and described as follows. The attacker’s main objective is to cleverly

Fig. 1. Flowchart Illustrating of the attack lifecycle, which provides a comprehensive
understanding of the attack process.
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hide the malware within images so that the alterations are practically invisible to
the naked eye. On the other side, we have the unsuspecting user. This individual
or system becomes the recipient of the contaminated model, often without their
knowledge. The following steps outline the attacker’s scheme:

Attacker side
1. Develop the neural network model: This is a specific type of neu-

ral network model with a unique capability: it can seamlessly embed
malware into images and later retrieve the hidden malware from these
images (the exact mechanics of how this neural network operates and
the principles it relies on, will be discussed in greater detail later in the
paper).

2. Embed the malicious code: The input malware (‘secret’) is embed-
ded as an image within another innocent image (‘cover’) using the neural
network.

3. Write an intriguing article: The article isn’t just informative; it’s also
persuasive. It explains the workings of this special neural network model
in a way that piques curiosity and encourages readers to explore further.
The goal is to make the model sound groundbreaking and innovative,
sparking readers’ interest to the point that they will want to download
and experiment with it.

4. Makes the model and the image publicly accessible: After cre-
ating sufficient buzz through the article, the attacker makes this model
available online. However, the distribution method is far from conven-
tional. The attacker might employ a strategy known as ‘supply chain
pollution.’ This crafty technique circulates harmful software by integrat-
ing it into legitimate supply chains. Using this method, the attacker can
effectively disseminate the tainted model into numerous repositories or
other locations.

User side
1. Download the intriguing model: This can happen by actively search-

ing for and downloading described in the attacker’s article or through an
automatic update process. Regardless of the method, once the receiver
has the model, they inadvertently extract the concealed malware. This
isn’t a random process, though. The malware is equipped with a set of
predefined rules, which it follows to verify its integrity and successfully
integrate itself into the receiver’s system without raising any red flags.

2. Execute the model locally with the malicious image: The code
of the deep learning network, the OCR, and the stego-image, are in
the hand of the user. The user executes the code to study about deep
learning, and it interpreted the malware code, which runs locally on the
user’s machine.

The open-source paradigm supports the above scheme. With the acceptance
of this paper, we aim to foster further research and collaboration by providing
open-source access to our implementation code.



4 M. Diyachkov et al.

2 Related Work

Recent years have witnessed the popularity of internet-based code-sharing plat-
forms, notably Git [1], where users and programmers exchange code globally.
According to a statistical analysis by Kinsta [2], Git has garnered an impressive
user base of approximately 100 million developers worldwide, thereby highlight-
ing its significance in global code-sharing activities. The platform attracts an es-
timated 14 million visitors daily and nearly 96.4 million daily page impressions,
further substantiating its robust utilization in the global developer community.

As the use of code from the internet is so widespread, antivirus software is
also evolving to prevent infection by various viruses. Consequently, we decided
to hide the code in images using steganography and machine learning methods
to circumvent antivirus protections.

Steganography, an ancient practice rooted in concealing a text within plain
view, has evolved significantly over time. Its origins can be traced back to the
15th century, when the physical hiding of messages was commonplace [4]. In the
present era, modern steganography focuses on discreetly conveying digital mes-
sages. Working covertly, embedding confidential information within unsuspecting
cover images is characteristic of steganography and presents it as a captivating
field of inquiry, particularly within the realm of cybersecurity.

Steganography methods can be grouped into three categories: traditional
methods [11] that do not involve machine learning or deep learning algorithms,
methods based on Convolutional Neural Networks (CNNs) [4], and methods
based on Generative Adversarial Networks (GANs) [5]. One traditional method,
Least Significant Bits (LSB) [6] substitution, converts secret information into bi-
nary form and then replaces the least significant bits of the cover image with the
binary data. Another traditional method, Pixel Value Differencing (PVD) [13],
takes the difference between consecutive pixels to determine where to hide secret
bits while maintaining the consistency of the cover image. In recent years, re-
search on steganography has benefited from developing deep learning methods,
including CNNs and GANs, and their use in steganography and steganalysis.

Initially, the encoder-decoder architecture was used for data compression,
with the encoder compressing the input into a smaller representation and the
decoder accurately reconstructing the original input. However, this architecture
is not ideal for generative models as the encoder output is not regulated. Varia-
tional Autoencoders (VAEs) presented in [9] address this regulation problem by
combining the encoder and decoder modules with modifications to the penul-
timate layers. VAEs and Generative Adversarial Networks (GANs) have been
used for data generation, such as images and text, and have also been applied
in media steganography and creating fake content for deception.

In a paper by Wang et al. [12], a novel approach is introduced for stealthily
transmitting malware through a neural network model. The malware is inserted
into neurons, enabling its covert delivery with minimal or no effect on the neu-
ral network’s performance. Additionally, the unchanged structure of the model
allows it to bypass antivirus detection.
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Baluja [4] uses deep neural networks to place a color image within another
image of the same size. He utilized two full-colored images of resolution 64× 64.
However, this low resolution presents a significant challenge when the objective is
to conceal an image containing code. As such, in its original form, [4] architecture
does not offer an adequate solution when the goal is to hide a script code. As
illustrated in Figure 2, the secret image is not effectively hidden. Following, we
describe how we tackled this challenge and how we could hide the malicious code
using a deep neural network based on [4] idea.

Fig. 2. Example of a stego image generated using the original model proposed by
Baluja et al. [4], showcasing the limited effectiveness of the model in concealing a
complex secret image at 64× 64 resolution.

3 Attack lifecycle

The architecture we use in this study, grounded in the autoencoder methodology,
comprises three key networks: a Preparation Network, a Hiding Network, and a
Revealing Network. The Preparation Network is a neural network designed for
image preparation. The Hiding Network assumes the responsibility of concealing
the images. Lastly, the Revealing Network is employed to disclose hidden or secret
images.

Our first step was to enable the model to handle images with high resolution,
specifically 256×256. To accomplish this, we used the ImageNet [10] dataset for
the cover images, and developed a new dataset for the secret images using the
following procedure:

The input malware, a Python code, is transformed into an image using the
Python PIL library [3]. This results in a new dataset comprising 10000 images.
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These images, referred to as the ‘secret’, are designed to conceal the malware
within a cover image. We used cover images from ImageNet and generated 10, 000
images with random text arranged like code. The secret image is then fed into
the Preparation Network. This network transforms the color-based images into
a representation with three channels of useful features.

Fig. 3. The attacker initially takes a code represented as an image with text; the
first, preparation network extracts features from this image. Following this, the hiding
network takes in the features from the first network as well as the carrier image in
which it conceals these features. The output of this network is a stego image.

This transformation is achieved by applying three convolutional layers with
3× 3, 4× 4, and 5× 5 filters and three input channels each. Additionally, three
more convolutional layers are used with the same filters but with 65 channels
each. The output from these layers, combined with the cover image, is subse-
quently processed by the Hiding Network.

The architecture responsible for concealing the extracted features from the
secret within the cover image is the Hiding Network. This process is accomplished
by performing fusion operations, where the feature maps are concatenated and
passed through three convolutional layers, each with 68 channels. The cover
image contributes an additional three channels. This operation is repeated five
times, adding up to a total of 15 layers. This flow is visually summarized in
Figure 3.

The Revealing Network or decoder receives the stego image, which contains
the concealed secret, and reconstructs the secret from it (see Figure 4 ). This
reconstruction process involves passing the stego image through three convolu-
tional layers, each with three channels (RGB). Subsequent fusion operations are
performed, and the data is passed through three layers using the same filters
previously mentioned. This operation is repeated four times, adding 12 layers
to the network. Finally, the decoder applies a final convolutional layer with 3x3
filters and 65 input channels to generate the reconstructed secret image.

To extract the code from the image and execute it within the decoder appli-
cation, we employed the Tesseract OCR [7]. Both the Revealing Network and the
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OCR are published to the user within the deep-learning tutorial as plain code.
Note that these codes are neutral, identified by the anti-virus as legitimate, and
would easily execute on the user’s machine.

Fig. 4. The decoder’s functionality of taking the stego image and extracting the con-
cealed code via the Revealing network. A user-derived script subsequently takes this
revealed secret to the OCR, which identifies the covert code embedded within the im-
age, and relays it back. Following this, the script executes the hidden code.

Tuning the stenographic success

To quantify the success of the stenographic hiding and correctly define the pa-
rameters to achieve good hiding, an error function must be defined that quanti-
fies the difference between the cover, the secret, the container, and the revealed
images.

The following error function proposed by Baluja et al. [4] which designed
to minimize the difference between the cover image and the stego image and
between the secret image and the revealed secret image. The error terms corre-
sponding to these differences are combined in a weighted sum, with the weight
for the reconstruction error of the secret image being determined by a hyperpa-
rameter, beta (β). The error function is given by:

E(c, c′, s, s′) =
1

m · n

m∑
i=1

n∑
j=1

(c(i, j)−c′(i, j))2+β · 1

m · n

m∑
i=1

n∑
j=1

(s(i, j)−s′(i, j))2

(1)
In the above equation, c and c’ are the cover and stego images, s and s’ are

the secret and revealed secret images, and m and n are the dimensions of the
images. The term β is a weighting parameter that determines the weight given
to the reconstruction error of the secret image.

In our research, modifications were made to this error function that impact all
three networks: Preparation Network, Hiding Network, and Revealing Network.
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This was achieved by leveraging both the error rates of the secret and cover
images. We suggest the following error function:

Er(c, c
′, s, s′) =

(1− β)

m · n

m∑
i=1

n∑
j=1

(c(i, j)−c′(i, j))2+
β

m · n

m∑
i=1

n∑
j=1

(s(i, j)−s′(i, j))2

(2)
The key distinction between the two error functions is the application of the

weighting parameter, β, to the error term related to the difference between the
cover and stego images and (1 − β) to the error term related to the difference
between the secret and revealed secret images. This modification gives the at-
tacker more control over the relative importance of the two error terms. The
flexibility to adjust these weights may lead to improved outcomes, depending on
the specific application or use case, as shown in our results below.

4 Results

Train evaluation

We initiated the training phase for our model, which consisted of a bunch of
epochs. In this context, an epoch refers to one full cycle through the entire
training dataset. We selected a batch size of 32 images, a standard choice that
balances computational efficiency and learning stability. This decision was also
influenced by the capacity of our available hardware, specifically the 16 GB of
RAM.

For our experiments, we utilized cover images from ImageNet [10], a large-
scale image database commonly used in machine learning. Alongside these, we
generated an additional 10,000 images featuring randomly arranged text that
emulated a code structure. The model was trained on these images, each with
dimensions of 256x256. We created each batch by randomly selecting 14 images
as the secret and 14 as the covers. With 164 batches in each epoch, our model
was set to run for a total of 200 epochs.

In our training process, we experimented with various values of the weight-
ing parameter, β, which adjusts the trade-off between hiding the secret image
and preserving the visual quality of the cover image. The outcomes of these
experiments were compared to identify the most effective value.

We utilized the Adam optimizer [8], known for its effectiveness in training
deep learning models, to optimize the learning process. Additionally, we imple-
mented a learning rate scheduler to adjust the learning rate during the training
process dynamically. This was based on whether the model’s validation loss
plateaued, a strategy designed to help the model converge further or potentially
escape local minima.

After several hours of running the training process, we successfully obtained
a fully trained model. The evolution of the error function can be observed in
Table 1, which charts the error against the number of completed epochs. The
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Table 1. Error for different weighting parameter, β
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first row relates to the weighted difference between the cover and the stego

images, namely (1−β)
m·n

∑m
i=1

∑n
j=1(c(i, j)−c′(i, j))2. The second row relates to the

weighted difference between the secret (i.e., the malware code) and the revealed
images, namely β

m·n
∑m

i=1

∑n
j=1(s(i, j) − s′(i, j))2. The last row indicates the

whole error function as appears in Equation 2.

Table 2. The error at the end of the training process

β weighted cover difference weighted secret difference Error function

0.25 0.00048 0.00033 0.00044

0.48 0.00058 0.00020 0.00040

0.6 0.00059 0.00016 0.00033

In the experiments, we varied the weighting parameter beta in three different
models to study its impact on steganography. Beta was set to 0.25, 0.48, and
0.6, respectively. In Table 2, we present the performance of the models at the
end of the trained process (i.e., the mean error values of the last batch) for each
beta. (Due to the lack of space and the similar behavior, Table 1 presents only
results for β = 0.25, 0.48, but in Table 2, the results for β = 0.6 also appear).

Visual example

To get a visual demonstration of the visibility of the stego image and the quality
of the ability to extract the code from it, Fig 5 show an example of a particular
cover image and a secret image.

Fig. 5. Cover image and secret image (malware code) examples.
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Table 3. Performance of the trained models for the input images of Fig 5 with varying
beta parameters

β = 0.25 β = 0.48 β = 0.6
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In Table 3, we exhibit the model results for this example using various val-
ues for the weighted error parameter (β). The ‘Container’ row demonstrates
the resulting stego images post the encoding process, where the secret images
have been embedded into the cover images. The ‘Revealed’ row shows the secret
images posted after the decoding process.

The visual inspection of the revealed images and the comparison with the
original secret images give an insight into the model’s performance. Also, the
stego images, when compared to the cover images, indicate the degree of percep-
tual transparency achieved in the process. The results inferred that a beta value
of 0.25 yielded the most optimal outcome, offering a good balance between the
concealment of the secret image and the perceptual transparency of the stego
image.

Figure 6 visually represents the pixel-by-pixel difference between an example
of a Cover and a Container images, calculated using the Mean Squared Error
(MSE). This measure quantifies the discrepancy between the corresponding pix-
els in both images by computing the squared differences. Visually, we can observe
that while increasing beta, the values of the secret image stand out more in the
MSE matrix (for β = 0.6, one can actually read part of the secret code), even
though it is difficult to recognize that code in the container image.
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β = 0.25 β = 0.48 β = 0.6

Fig. 6. Visual representation of the Mean Squared Error (MSE) computed difference
between the Cover and Container images for β = 0.25, 0.48 and 0.6.

5 Discussion and Conclusions

In this study, we investigated the use of deep neural networks for embedding and
extracting secret information within images. The primary objective is to extract
text from the secret image while ensuring that the secret remains invisible in
the stego image. We introduced a novel approach that allows control over the
weight distribution between cover and secret losses using beta values, enabling
us to strike a balance between successful extraction and concealment.

Through rigorous experimentation and analysis, we evaluated the perfor-
mance of our model on different beta values. The table above summarizes the
results obtained for each beta, including the cover image, secret image, stego
image, revealed secret, and the difference between the cover and stego images.

Our findings demonstrate that by adjusting the beta value, we can effectively
control the visibility of the secret image in the stego image. Lower beta values
prioritize the cover loss, resulting in a stego image where the secret remains
hidden. On the other hand, higher beta values assign more weight to the secret
loss, allowing for the successful extraction of the embedded text.

Furthermore, we emphasize that our focus was primarily on the successful
extraction of text from the secret image, rather than achieving a perfect repre-
sentation of the secret image. This approach strikes a balance between covert
communication and maintaining the confidentiality of the hidden information.

It is worth noting that for betas 0.6 and 0.48, the difference image reveals
parts of the embedded secret. Although not easily visible in the stego image
itself, these partial revelations in the difference image could potentially pose
a security risk in certain scenarios. However, it is important to consider the
overall objective of extracting text from the secret image, which was successfully
achieved without compromising the secrecy of the hidden information.

By achieving the objective of extracting text from the secret image while
ensuring its invisibility in the stego image, our research contributes to the field
of steganography. It provides a valuable tool for applications requiring secret
communication and data hiding.
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Overall, our study highlights the effectiveness of deep neural networks in
achieving the dual objective of successfully extracting text from the secret image
and concealing the secret in the stego image. These findings have significant
implications for the development of secure communication systems and provide
a foundation for further advancements in the field of steganography.
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Abstract. We present an efficient method to track multiple moving
objects in a video. To this end, we utilize motion vectors and clusters,
which are computed very efficiently in common video encoders, usually
via dedicated hardware. We suggest a provably good tracking algorithm
for clustering these vectors, by considering them as segments. For this,
we utilize Coresets which are essentially a weighed set of points that
approximates the fitting loss for every model, up to a multiplicative factor
of 1± ε. We demonstrate the empirical contribution of our algorithm by
running it on a micro-computer (Le-Potato) with a real-time video.

1 Introduction

The goal of this work is to provide a novel tracking method incorporating classi-
cal machine learning in contrast to the current prevalent deep learning methods,
with the primary goal of reducing the running time and improving the robust-
ness.

1.1 Video tracking

The problem of tracking objects in RGB videos is a well-studied problem, for
which numerous heuristics using various approaches were proposed. A meta-
survey on such approaches [14] states that in recent years there were thousands
of papers published on this subject. One of the very prominent approaches is
utilizing neural networks. While neural networks yield unprecedented results,
such improvements come at the price of training, which along with the labeling
of data is rather costly. Another challenge is the cost of utilizing the results after
the training, which requires at least mid-level GPUs to achieve 30-fps (frames
per second) in real-time. Moreover, recently [8], demonstrated the problem where
even small changes in the data may “fool” the network. We note that while there
were works on addressing similar problems in recent years using more sophisti-
cated training, see for example [3], it is uncertain whether more sophisticated
“attacks” could cause such problems.
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1.2 Motion vectors

Motion vectors are computed in real-time as part of existing encoders for videos,
such as H.264 [13], H.265, etc. [6]. In general, those are mapping from one frame
to another, with the goal of usually minimizing some loss function, such as
Mean Squared Error (MSE) between the RGB values, to allow keeping only this
mapping (as a vector) and the difference between the blocks.

In our work, we consider the rather simple case where the mapping is from a
frame to its previous frame. For a more detailed explanation on motion vectors
and their computation see [13].

1.3 Our approach

We use a very different approach that does not suffer from the aforementioned
drawbacks. There is no training data or training process, the computation is
efficient as evidenced by our analysis and tests, and if the algorithm produces a
wrong result the reason for this faulty result can be easily traceable. For this, we
utilize motion vectors, which are computed in real-time as part of existing en-
coders for videos. We consider each vector as a segment and compute a provable
clustering of the segments.

We emphasize that for each motion vector, we add its degree to (0, 1) and
(1, 0); thus we have 4-dimensional segments. This allows us to take into consid-
eration the direction of the vectors in our clustering.

2 Empirical evaluation

Tracing method: We have implemented a clustering-based method in python
3.8 [12] utilizing [2], [1], [10], and Numpy [4].

Goal: In those tests, we aim to demonstrate that by utilizing our clustering
method we can in real-time and on standard hardware track the movement of
objects in a video.

We emphasize that since the computation utilizes only the motion vectors,
and not the RGB part of the image, this method also allows privacy preservation
to some degree while providing real-time object tracking.

Input video: In this test, we have used a clip of the Big Buck Bunny
video [7] that contains 400 frames in the resolution of 720x1280p. We have chosen
this video due to its prevalence in the video tracking community, and is licensed
under the Creative Commons Attribution 3.0 license, which essentially entails
“you can freely reuse and distribute this content, also commercially, for as long
you provide a proper attribution”; cited from the official site for the project,
https://peach.blender.org/about. We have chosen this part of the video since it
contains a bunny walking across the stationary background, thus the tracking
can be validated rather simply in a visual sense.
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2.1 Laptop test

In this experiment, we have run the experiment on a standard Laptop with an
Intel Core i3-1115G4, and 16GB of RAM. The video was streamed in real-time
from a file, we have utilized a clip at 720x1280p resolution from [7]; provided in
the supplementary material.

In what follows we provide a few examples from the clip, the entire clip of
the tracking result is provided in the supplementary.

Fig. 1. A subset of the results for the experiment at Section 2.1. The left column is the
largest cluster of the motion vectors computed and the right column is the center of
this cluster and mean direction. The top row demonstrates a section of the video where
the bunny rises from the cave. The middle and bottom rows demonstrate a section of
the video where the bunny walks to the left and are taken with a small time difference
in the video.

As can be seen in the top images the movement direction is to the opposite
direction from the movement of the bunny. This occurred due to the bunny
entering the field of view, and thus the closest (in color) parts from the previous
frame are the parts already seen, and thus the motion vectors pointed in the
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opposite direction from the actual movement. Unfortunately by only looking
at the motion vectors we cannot remove this problem when objects enter or
disappear from the field of view. Nonetheless, observe that the cluster found,
which aims to represent the center of the moving object is the center of the
bunny, and thus there is no visually evident problem in identifying the center of
the object.

On the other hand, as can be seen in the bottom images, when the bunny has
entirely entered the field of view and started walking, we obtain visually logical
tracking with the predicted movement following the movement of the bunny and
the cluster being the center of the object.

Running time: To provide context for the computation time we note that
the entire running time (including decoding the video and saving the resulting
tracking video) was 1.44 seconds, of which the decoding the video and saving
the resulting tracking video took 1.22 seconds, i.e., our tracking algorithm took
only 0.22 seconds. Since there are 400 frames in the clip, the tracking algorithm
processed above 1, 800 frames per second, and even including decoding the video
and saving the resulting tracking video we obtain 325 frames per second.

To put it into perspective, the running time of YOLOv8 [9], which is an
improvement over YOLOv5 [5], over the same clip is 33.4 seconds, which entails
a processing rate of 12 frames per second, output attached at the supplementary
material.

2.2 Re-running for Low-end board:

We have rerun the previous test (Section 2.1) for Libre computes AML-S905X-
CC (also known as Le Potato) https://libre.computer/products/aml-s905x-cc/,
which is a small single-board computer similar to Raspberry Pi [11]; we have
used the official Raspberry Pi OS distributed for Le Potato.

Due to missing support for ARM architecture, we have extracted the motion
vectors beforehand and transferred them as a Numpy array; thus this is not
exactly a stand-alone test that utilizes only the video.

In this, we aim to demonstrate that our methods can support extremely
low-end systems in reasonable real-time. We have obtained essentially the same
results, as can be expected since the only sources for noise are ties broken arbi-
trarily in the clustering and noise from the samples we take.

The entire running time (excluding innit, but including decoding the video
and saving the resulting tracking video) was 16.2 seconds, of which decoding
the video and saving the resulting tracking video took 14.61 seconds, i.e., our
tracking algorithm took only 1.59 seconds. Since there are 400 frames in the
clip, the tracking algorithm processed above 250 frames per second, and even
including decoding the video and saving the resulting tracking video we obtain
27 frames per second.
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Abstract. This research proposes a unique approach to collect anonymized pa-

tient data on limb movements during physical therapy exercises using a combi-

nation of OpenPose and MediaPipe skeleton extraction technologies. The pro-

posed system allows the system to score the quality of the patient's movement. 

The study compares expert skeleton extraction using OpenPose with real-time 

patient skeleton extraction using MediaPipe, ensuring the system's effectiveness 

in a patient's home environment. Additionally, a fully linked network is employed 

as a MediaPipe to OpenPose conversion to address MediaPipe's inaccuracy in 

skeletal structure. To classify the accuracy and quality of patients' movements, 

we use EfficientNet as our CNN, which is compact and suitable for implementa-

tion in regular mobile phones. We created a human gesture database and utilized 

EfficientNet to tag, measure, and infer human gestures. We imitated patients' 

movements and augmented them to address the lack of labeled physiotherapy 

exercise videos to enhance the database's performance. The skeletons are then 

grouped into a single array and fed to the CNN, obtaining their low-dimensional 

vector representation, which is categorized using the empirical scoring technique 

to measure the patient's exercise compared to their physiotherapist. The proposed 

system is tested on a dataset of six different physiotherapy exercises, achieving 

an accuracy of 91.8%. 
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1 Introduction 

The metaverse has become one of the hottest research areas in the industry today, which 

requires new methods to analyze human gestures [1]. With the recent COVID-19 epi-

demic, the importance of remote diagnosis and treatment has been brought into sharp 

contrast, highlighting the need for remote physiotherapy treatment. Artificial neural 

networks have advanced where systems can collect, analyze, and interpret human ges-

tures in a remote 3D environment through a camera video feed. The study compares 

expert skeleton extraction using OpenPose with real-time patient skeleton extraction 

using MediaPipe, ensuring the system's effectiveness in a patient's home environment. 

Scoring is enabled for users to measure their performance and see their improvement. 

OpenPose [2] is a computer vision library that allows users to extract 2D and 3D pose 

information from a video. It provides the spatial location of each human joint, enabling 

tracking of human movement. On the other hand, MediaPipe [3] is a cross-platform 

framework that provides the real-time perception of objects and human body parts in 

the physical world, using techniques such as computer vision, machine learning, and 

depth sensing. While OpenPose provides precise skeleton extraction, MediaPipe offers 

real-time patient skeleton extraction, making it ideal for use in a patient's home envi-

ronment. EfficientNet is our CNN, a compact and suitable neural network for imple-

mentation in regular mobile phones to classify patient movements' accuracy and qual-

ity. EfficientNet is a state-of-the-art neural network architecture that achieves state-of-

the-art performance on image recognition tasks while requiring fewer parameters and 

lower computational resources than previous models. This paper aims to extract human 

body movements from a video, including gesture name, gesture time, repetition count, 

gesture speed, movement acceleration, and more. We will present techniques for mon-

itoring and evaluating the individuals' non-contact physiotherapy activities using algo-

rithms such as Autoencoder [4], Siam's Twines [5], and DTWNet [6]. Patients' move-

ments will be imitated and augmented to address the lack of labeled physiotherapy ex-

ercise videos to enhance the database's performance. We will describe a neural network 

as a tool for analyzing, measuring, and labeling skeleton graphs in time and space. The 

practical results of our research study will be presented through collaboration with the 

University of Prague and within the framework of the Israeli Ministry of Science and 

Technology. Our innovative solution will help to lower the danger of physical contact 

and the associated costs of rehabilitation by enabling learning and assessment of phys-

iotherapy activity in a home environment during rehabilitation. We will demonstrate 

how to combine data from multiple sources and extract metrics to provide a quantitative 

description and labeling of motions using only one or a few cameras. The VOCD will 

also be utilized to identify transient patterns in the patient's motions while performing 

the exercise and generate a therapy report for the therapist. The underlying concept of 

the algorithm is to demonstrate how the study findings could be used, for example, for 

remote patient rehabilitation. We aim to provide patients with quantifiable data and 

inform them of discrepancies between their necessary and actual gestures. This capa-

bility may be employed for remote therapy, particularly in cases involving a large num-

ber of patients recuperating from hip, knee, elbow, or shoulder surgeries. The tutorial 

outcomes will enable participants to create a family of neural network architectures, 
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creating a wide range of contactless medical solutions. More broadly, this will permit 

tags to be attached to motions in various industries, from athletics to choreography to 

physical security to intelligence and behavioral analysis. 

2 Related Work 

2.1 Human Skeletal Data Extraction Methods 

OpenPose is a real-time multi-person system that can detect key points in the human 

body, hand, face, and foot movements using images or frames in videos [1], [2], [7], 

[8]. This system generates 75-component skeleton vectors (25 key points with three 

components - x, y, and c) representing the data. Although OpenPose is a powerful tool, 

it requires a high-performance computer. To increase performance, we developed a 

method using the H264 video encoder motion vector as a vertex tracking algorithm, 

eliminating the need for OpenPose [1], [9]. Another approach to avoiding OpenPose is 

to use Mediapipe. Body tracking is critical to the Mediapipe method, but the cost is its 

accuracy. Other key points extraction systems require assistance before or during oper-

ation, making them unsuitable for home use. Our research aims to develop an affordable 

and user-friendly system that mix between OpenPose and Mediapipe. A gold standard 

for body monitoring involves using infrared markers, but it is expensive and complex. 

Commercial motion capture systems like Vicon [10], OptiTrack [10], [11], Qualysis 

[12] , and BTS [13] use multiple synchronous infrared cameras, reactive markers, and 

unique body models. While these systems are highly accurate and offer multiple current 

models, they are expensive, time-consuming to prepare for measurements, require 

trained operators, and cannot be used at home. This work presents high-quality skeleton 

extraction techniques that use offline OpenPose for extracting the expert key point. For 

The patient, we need real-time channels like Google Mediapipe [3]. The developers of 

OpenPose have published several articles that provide a comprehensive account of the 

system's research and its evaluation of posture based on previously taught body part 

models. The system is frame-based, assigning an independent position estimate to each 

image. Other systems, such as Microsoft Kinect [14], Xsens [15], Rokoko [16], and the 

intelligent captain suit manufactured, are examples of full-body commercial capturing 

suits that can be used for general and specialized applications. Some experts from Dub-

lin University have also established a framework for obtaining the 3D trajectory of a 

golf swing or other sports equipment using inertial sensors such as accelerometers, gy-

roscopes, and magnetic sensors. Mathematical transformations and Kalman filters esti-

mate a 3D position in space based on acceleration, angular velocity, and gravitational 

force. Overall, multiple techniques are available for human skeletal data extraction, 

with each system having advantages and disadvantages. By mixing such techniques, 

we aim to develop an efficient and accurate system for extracting human skeletal data 

that can be used for various applications. 
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2.2 Extracting Human Pose key points: A Review of Techniques and 

Applications. 

Human pose accuracy is critical to various applications, such as medical rehabilita-

tion, sports performance analysis, and security monitoring. Several techniques and 

frameworks have been developed to extract and analyze human pose data from images 

and videos, including OpenPose, MediaPipe, AlfaPose, PoseNet, OpenCV, Mmpose, 

BlazePose, HRNet, YOLO, and PNASNet.  

OpenPose is a widely-used open-source software library that uses deep learning to 

extract and analyze human pose data from 2D images and videos [8]. The system can 

detect up to 135 key points, including body parts, face, and hands, with high accuracy 

and real-time performance. The OpenPose model uses a multi-stage convolutional neu-

ral network (CNN) architecture with part affinity fields (PAFs) to estimate the body 

part locations and their connection. The system has been applied to various applica-

tions, such as medical rehabilitation, dance analysis, and sports performance. 

MediaPipe is another open-source software library that provides real-time multime-

dia processing, including human pose estimation [3]. The system uses a hybrid ap-

proach that combines a 2D Human pose estimation model and a 3D Human pose esti-

mation model to improve accuracy and robustness. The 2D model uses a deep neural 

network to estimate the 2D pose key points, while the 3D model uses a regression tree 

to estimate the 3D pose key points. The system can also detect face landmarks, hand 

landmarks, and object detection. 

AlfaPose is a deep learning-based framework that uses a multi-stage approach to 

estimate human pose in images and videos [17]. The system first detects human body 

parts using a YOLO object detection model, then estimates the joint body locations 

using a convolutional pose machine (CPM) model. The system has been trained on a 

large-scale dataset and achieved state-of-the-art accuracy in several benchmarks. 

PoseNet is a deep learning-based model that can estimate human pose in real-time 

using a single RGB camera [18]. The system uses a fully convolutional neural network 

(FCN) architecture to estimate the joint body locations. The system has been optimized 

for real-time performance and can be used in various applications, such as fitness track-

ing, augmented reality, and gaming. 

OpenCV is an open-source computer vision library that provides various image and 

video processing algorithms, including human pose estimation [19]. The library in-

cludes several pre-trained models, such as the HOG+SVM model, which can detect 

body parts in images. The library also provides various algorithms for image segmen-

tation, object tracking, and feature extraction, which can be used to improve pose esti-

mation accuracy. 

Mmpose is an open-source pose estimation framework that provides various models 

and algorithms for Human pose estimation [20]. The framework includes several state-

of-the-art models, such as the HRNet model, which uses a high-resolution network to 

estimate joint body locations. The framework also provides various data augmentation 

techniques and loss functions to improve accuracy and robustness. 

BlazePose is a real-time Human pose estimation model that uses a lightweight neural 

network architecture for fast and accurate pose estimation [21]. The model uses a 
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convolutional neural network with residual connections to estimate joint body loca-

tions. The model has been optimized for mobile and embedded devices and can be used 

in various applications, such as virtual try-on and fitness tracking. 

HRNet is a high-resolution network that can estimate human pose accurately and 

efficiently [22]. The network uses a multi-resolution fusion strategy to combine the 

high-resolution and low-resolution features, improving accuracy and reducing compu-

tational complexity. The network has achieved state-of-the-art accuracy in several 

benchmarks and can be used in various applications, such as sports performance anal-

ysis and medical rehabilitation. 

YOLO (You Only Look Once) is an object detection framework that can detect and 

track human body parts in images and videos with high accuracy and real-time perfor-

mance [23]. The system uses a deep neural network with a single forward pass to detect 

and track objects in an image. The system has been applied to various applications, 

such as pedestrian detection, face detection, and sports action recognition. 

In conclusion, measuring human pose accuracy is a critical task in various applica-

tions, and several techniques and frameworks have been developed to extract and ana-

lyze human pose data from images and videos. These include OpenPose, MediaPipe, 

AlfaPose, PoseNet, OpenCV, Mmpose, BlazePose, HRNet, YOLO, and PNASNet. 

Each of these techniques and frameworks has advantages and disadvantages, and the 

choice of the most suitable method depends on the specific application requirements, 

such as accuracy, real-time performance, and resource constraints. 

 

2.3 Measuring pose accuracy  

Measuring human pose accuracy is crucial in various applications, including virtual 

reality, gaming, medical diagnosis, and sports training. The accuracy of human pose 

estimation methods is usually evaluated by comparing the estimated key points with 

the actual key point locations, which are often obtained using expensive sensors, such 

as VICON [10]. However, recent advances in machine learning have enabled the use 

of neural network (NN) architectures for human pose estimation, which can achieve 

high accuracy without expensive sensors. One commonly used method for measuring 

key point location accuracy is the mean per joint position error (MPJPE) [2], which 

computes the average distance between the estimated and real key point locations, typ-

ically in millimeters. Another method is the Percentage of Correct Key points (PCK) 

[24], which measures the percentage of estimated key points that are within a certain 

threshold distance from the key point locations. Compared to sensor-based methods. 

3 Proposed Method 

The primary objective of this study is to investigate human body movements by 

comparing them to a ground truth movement, which is an exercise performed by a 

physiotherapist. To achieve this objective, we propose a schema (see Fig. 1) that in-

volves extracting body movements from a video stream and representing them as a 

collection of vectors that depict a graph of the human skeleton. The OpenPose algo-

rithm is used to extract the human posture from a video frame, which is then converted 
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into a vector with 75 dimensions. Since each exercise has its own dominant vertices, an 

algorithm is required to determine which vertices are relevant. To solve this problem, 

we use the PCA algorithm, which measures the variance of each vertex and selects the 

dominant vertices. An autoencoder is used to reduce the 75-dimensional vector to 15 

main dimensions, which are then fed into the DTW algorithm to calculate the distance 

between the therapist and the patient vectors. This distance is normalized to produce an 

exercise score. To overcome the challenge of creating a large database in the medical 

field, we have developed an algorithm that generates human movement from a textual 

description, which is then converted into a vector representation similar to that pro-

duced by OpenPose. The resulting data set is processed through a neural network, and 

the vector dimension of the vector is reduced. In summary, the proposed schema in-

volves using the OpenPose algorithm to extract human posture, the PCA algorithm to 

select dominant vertices, an autoencoder to reduce the vector dimension, and the DTW 

algorithm to calculate the distance between vectors. The synthesized data set generated 

from a textual description is processed through a neural network, and the vector dimen-

sion of the vector is reduced. 
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Fig. 1. Model  

In the synchronization process, for each dominant key point of the therapist, the cor-

responding matching key point of the patient is selected, and the Fourier Transform is 

calculated to find the dominant frequency for each key point pair. The phase difference 

between each pair of matching key points is then calculated using the phase detection 

algorithm, and the average phase is calculated to synchronize the patient and therapist's 

movements. The output of this process is two synchronized skeletons, one for the ther-

apist and one for the patient. 
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4 Patients Database 

4.1 General description. 

The proposed training set is based on physiotherapy exercises developed by Ben-
Gurion University and the University of Prague with the support of the Chief Scientists 
of Israel and the Czech Republic. There are six basic physiotherapy exercises in the 
database, which have been carefully selected to be suitable for analyzing and processing 
with a single camera (two-dimensional processing).. 

4.2 Database exercises content 

There are 100 participants in the database, who each perform six exercises.  

(1) AFR - Exercise arm full range (side view) 

(2) ARO - Exercise arm rotation (front view) 

(3) LBE - Exercise leg backward extension (exercise with a chair, side view) 

(4) LFC - Exercise lifting from the chair (side view) 

(5) SLL - Exercise side leg lift (lower limb abduction, front view behind the 

chair) 

(6) TRO - Exercise trunk rotation (front view) 

Ten cycles comprise each exercise (e.g. rotating the right arm). Exercises are 
performed once with a right tilt and once with a left tilt (for example, once with a right 
foot rotation and once with a left foot rotation). A total of about 7500 motion cycle videos 
have been tagged and timed in the database.  

4.3 Database as human skeletons 

The entire database has been encoded as skeletons - a skeleton in every frame. A 
NUMPY array file, and a JSON file are used to maintain the database. Performing 
exercises creates skeletal structures. The human body is represented by 25 vertices in 
each skeleton. The vertex has three components: Coordinate X, Coordinate Y, and 
Coordinate C, which indicates the level of certainty about each point in the skeleton on 
a scale from 0 to 1 (1-absolute certainty, 0 absolute uncertainty). Therefore, a single 
skeleton extracted from a frame is represented by a single vector with 75 components (3 
X 25). The JSON files are structured so that one file exists for each frame, and inside 
each file is a list of several skeletons, one for each person in the image. Both the 
MATLAB files and the NUMPY files are organized in the same manner. Every file 
contains a matrix. The matrix contains 75 columns and the number of rows is equal to 
the number of frames in the video. In other words, each row describes an individual 
skeleton. If more than one skeleton was sampled in a single frame, then only the first 
skeleton, marked with ID 0, will be extracted. 
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5 Gesture generator via text script (augmentation) 

In our work, we require a large dataset with enough training examples, but we use 

synthetic data in the absence of such databases. We use synthetic data to classify body 

movements from synthetic human skeletal vectors, which can be achieved by designing 

and training a neural network. To create synthetic data for training the neural network, 

we gathered and filmed videos of predetermined movements, then converted them to 

OP format and manually tagged them. We created a "Pose Dictionary" corresponding 

to each pose, defined according to OP, and complementing the vertices of a human 

skeletal body. Each movement is built from a sequence of poses in the pose dictionary, 

and each movement is derived from a sequence of poses. We created an artificial skel-

etal vector to train the neural network with many artificial skeletons. To create these 

vectors, we used a Python program that takes a CSV file as input and creates a set of 

vectors representing human skeletal movement from input parameters, including the 

name, speed, number of repetitions, and noise from the movement.  

We then divided the database into training and testing sets. To improve the synthetic 

data further, we created a Synthetic Motion Simulator that takes a CSV file as input 

containing movement names, speed, repetitions, and noise. The output consists of a 

.npy matrix of the synthetic movements and a video file of the skeletal movement in a 

.mp4 format. The process of creating one movement is depicted in Fig. 2.  

Fig. 2. Simulator Flow  

Initially, we updated only the relevant vertices for the movement while the other 

body parts remained still, which did not reflect natural human movement. We later 

added noise to the movement of the objects, making them look like they were moving 

more naturally. We also added the number of repetitions and the movement speed to 

the parameters. By combining several movements in a parallel manner or a sequence, 

we were able to create a new human movement. We can see in  Fig. 3 and Fig. 4 that 

the relevant vertices have changed, however, the body as a whole remains the same. 
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Fig. 3. ARO right movement. 

 

Fig. 4. ARO right and ARO left combined 

In conclusion, synthetic data is a valuable solution for creating datasets when an 

adequate amount of real-world data is unavailable. Our proposed system of synthetic 

data creation and neural network classification can be used to train models to recognize 

body movements. The Synthetic Motion Simulator can also improve synthetic data, 

making it look more realistic and usable for training. This technology has significant 

potential in various fields, such as physical therapy and sports training, to monitor and 

evaluate body movements to improve performance and reduce the risk of injury. 

6 The Neural Network 

We have investigated the Super Object technique for understanding human move-

ment. Our methodology seeks to provide a comprehensive solution for various human 

movement analysis issues. To implement this technique, we utilized TSSI. To demon-

strate the effectiveness of the Super Object technique, we conducted experiments using 

a Convolutional Neural Network (CNN) with a resolution of 49x49, tailored for small 

images. Our CNN classification model employed the state-of-the-art EfficientNet-B7 

classifier architecture, which has achieved remarkable performance in image classifi-

cation tasks. EfficientNet is a revolutionary technique for scaling CNNs that consider 

the depth and breadth of the network, as well as the resolution of the input image. By 

striking a balance between accuracy, computational cost, and data requirements, Effi-

cientNet is a suitable technique for improving CNN performance in various applica-

tions. We applied various strategies, such as data augmentation and transfer learning, 

to enhance our model's learning and prediction abilities. For the transfer learning ap-

proach, we froze the first three layers of the EfficientNet network and focused on train-

ing the last layers responsible for learning the unique characteristics of human motion. 

This approach resulted in improved performance while minimizing the risk of overfit-

ting. The final model had six classes corresponding to the six distinct human motions 

in our dataset: AFR, ARO, LBE, LFC, SLL, and TRO. Figure 5 illustrates the catego-

rization and training process outcomes, including the loss and accuracy functions' 

growth as a function of the number of epochs. Utilizing a pre-trained network with a 

clean dataset significantly improved learning speed and precision, demonstrating the 

effectiveness of the Super Object approach in studying human movement. In Error! 
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Reference source not found. confusion matrix, we summarized the categorization re-

sults, which demonstrate the feasibility and applicability of the Super Object method 

for assessing human movement. It is worth mentioning that, for the sake of simplicity, 

we only used the dataset of Czech pupils in this experiment. These students performed 

exercises in a controlled environment and laboratory settings, resulting in collecting 

clean and consistent data for demonstration purposes. This approach enabled us to 

demonstrate the Super Object technique and its potential for human movement analysis 

clearly and straightforwardly. 

 

Fig. 5. The Classifier results  

We trained the neural network with over of  100K frames of synthetic data.  The goal 

of the Encoder is to compress the data and thus save the most important information 

and optimize the calculations. The goal of the decoder part is to update the weights of 

the NN. Therefore, after training the model the encoder model is saved, and the decoder 

is discarded. 

7 The Classifier 

The method of our classifier can be seen in Fig. 6 : 

• Training the autoencoder and save the encoder, as we explained before.  

• Insert to the trained encoder the synthetic motion and all other predefined 

movements.   

• Compare the encoded (compressed) synthetic motion with all other prede-

fined encoded motions.  

• The classifier returns the decision of which motion it thinks has entered. 
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Fig. 6. The Classifier structure  

7.1 L1 Distance 

At first, after the motion is compressed (encoded), according to [1] we performed a 

Euclidean Distance measurement for each of the  6 predetermined motions, which are 

also compressed by a 15-vector.  The distance formula : 

D =
1

L
∑|xi − yi|

n

i=1

(1) 

𝑥 – The tested motion 

𝑦 – Predetermined motion 

𝑖 – One frame of the motion 

𝑛 – Total number of frames 

𝐿 – number of movements (in our case – 6) 

 
The motion that was closest to the tested motion (minimum distance) was the motion 

to which it was classified. This is a naive classification method  because it is limiting 

the number of frames of each motion to be the same length as predefined motions. 

This is a big problem since the speeds of the movements vary from person to person 

and we also want to deal with different numbers of repetitions of the motions. There-

fore, we change the decision formula to Dynamic Time Warping (DTW). 
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7.2 Dynamic Time Warping (DTW) distance 

DTW is used to compare the similarity or calculate the distance between two arrays 

or time series with different lengths, shifts, and speeds. DTW compares the amplitude 

of the first signal at time T with the amplitude of the second signal at time T+1 and T-

1 or T+2 and T-2. This makes sure it does not give a low similarity score for signals 

with similar shapes and different phases. The DTW calculation flow can be seen in Fig. 

7. 

Fig. 7.  DTW calculation flow 

DTW algorithm: 

1. Take two vectors, if one is longer than the other, it's padded with zeroes. 

Create an empty cost matrix. 

2. Fill the cost matrix from left and bottom corner according to: 

𝑀(𝑖, 𝑗) = |𝑃(𝑖) —  𝑄(𝑗)| + 𝑚𝑖𝑛( 𝑀(𝑖 − 1, 𝑗 − 1),  𝑀(𝑖,  𝑗 − 1),  𝑀(𝑖 − 1, 𝑗) )(2) 

𝑀 – the cost matrix, 

𝑖 for iterating 𝑃  time series 

𝑗 for iterating 𝑄  time series 

3. Warping path from the top right corner of the matrix to the bottom left. 

The path is identified based on the minimum neighbor. 

4. Calculate the distance: 

𝐷 =
∑ 𝑑(𝑖)𝑘
𝑖=1

𝑘
 (3) 

𝑑 – the warping path 

𝑘 −  the length of the warping path  

 

For classified the synthetic motions as describe in Fig. 8, we compared the encoded 

parts of each predefined motion.  

1. The encoder compressed each frame to a 15-vector.  

2. The DTW compares the 0𝑡ℎ place of the motion being performed (in all 

frames) to the 0𝑡ℎ place of the predefined motion, and so on the 

1,2,  … ,  14𝑡ℎ place. 

3. Each one of these 15 vectors classifies to a predefined motion according to 

the minimum DTW value. 

4. The selected motion is the one to which most vectors have been classified. 
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Fig. 8. The Autoencoder-DTW Classifier 

8 Experimental Results  

The runtime model takes a patient's video as input, which is first pre-processed by 

activating MediaPipe on the video, applying a normalization algorithm to rescale the 

skeletons and normalize the data to a range of [0,1], and then converting the patient's 

skeleton from MediaPipe skeleton format to OpenPose skeleton format using NN. To 

synchronize the patient's movements with the therapist's movements, the key points 

from the patient's skeleton that match the dominant key points of the therapist are se-

lected and fed into a synchronization block. The synchronized movements are then con-

verted into TSSI representation. The pre-trained Siamese NN, which consists of two 

symmetric CNNs that find the similarity matrix, takes the TSSI images of the patient 

and the therapist as input, and the DTW algorithm is applied on the similarity matrix. 

The results are then scored, and a score is returned. The neural network that we built 

for evaluated the quality of the simulator was used. We test 2800 (400 𝑝𝑒𝑟 𝑚𝑜𝑡𝑖𝑜𝑛 ×

7𝑝𝑟𝑒𝑑𝑖𝑓𝑖𝑛𝑒𝑑 𝑚𝑜𝑡𝑖𝑜𝑛𝑠)  motions, the data differs in type, speed, number of repetitions, the 

noise of the movement. The confusion matrix visualizes the performance of the system. 

Each row of the matrix represents the actual class of the tested motion while each col-

umn represents the predicted class. The accuracy is calculated by: 

Accuracy =
 trace(matrix)

𝑡𝑜𝑡𝑎𝑙 number of tested data 
= 91.82%(4) 

 

Fig. 9. Confusion Matrix  
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9 Discussion 

Our research proposes a unique approach to collect anonymized patient data on limb 

movements during physical therapy exercises using a combination of OpenPose and 

MediaPipe skeleton extraction technologies. The proposed system enables us to score 

the quality of a patient's movement during physical therapy sessions in real time. We 

tested the system using a dataset of 2800 motions that differed in type, speed, number 

of repetitions, and the noise of the movement. The confusion matrix visualizes the sys-

tem's performance, with each row representing the actual class of the tested motion 

while each column represents the predicted class. To process a patient's video and ex-

tract their skeletal data, we employed MediaPipe and OpenPose skeleton extraction 

technologies. We first pre-processed the video by activating MediaPipe and then ap-

plied a normalization algorithm to rescale the skeletons and normalize the data to a 

range of [0,1]. Next, using a neural network, we converted the patient's skeleton from 

the MediaPipe skeleton to the OpenPose skeleton. We then selected the key points from 

the patient's skeleton that matched the dominant key points of the therapist and fed them 

into a synchronization block to synchronize the patient's movements with the therapist's 

movements. The synchronized movements were then converted into TSSI representa-

tion, and a pre-trained Siamese neural network that consisted of two symmetric CNNs 

was used to find the similarity matrix between the patient and therapist TSSI images. 

Finally, we applied the Dynamic Time Warping (DTW) algorithm to the similarity ma-

trix, scored the results, and returned a score. To evaluate the accuracy and quality of 

the patient's movements, we employed EfficientNet as our CNN, which is compact and 

suitable for implementation in regular mobile phones. We created a human gesture da-

tabase and utilized EfficientNet to tag, measure, and infer human gestures. To enhance 

the performance of the database, we imitated patient movements and augmented them 

to address the lack of labeled physiotherapy exercise videos. We then grouped the skel-

etons into a single array and fed them to the CNN to obtain their low-dimensional vector 

representation, which was categorized using the empirical scoring technique to measure 

the patient's exercise compared to their physiotherapist. Our results demonstrate the 

effectiveness of the proposed system, achieving an accuracy of 91.8% when tested on 

a dataset of six different physiotherapy exercises. The study compares expert skeleton 

extraction using OpenPose with real-time patient skeleton extraction using MediaPipe, 

ensuring the system's effectiveness in a patient's home environment. We also employed 

a fully linked network as a MediaPipe to OpenPose conversion to address MediaPipe's 

inaccuracy in skeletal structure. In conclusion, the proposed system is a promising ap-

proach to collecting anonymized patient data on limb movements during physical ther-

apy exercises in real time. By combining OpenPose and MediaPipe skeleton extraction 

technologies, we can score the quality of a patient's movements and evaluate their ac-

curacy compared to their physiotherapist. This system can improve the quality of phys-

ical therapy exercises and could be implemented in regular mobile phones to improve 

patient care and support remote therapy sessions. 



16 

10 Conclusions  

We have explored the potential augmentation of a sample of human movement data 

with synthetic data simulation and neural network classification for recognizing body 

movements. Our proposed system has successfully utilized a Pose Dictionary, created 

from a sequence of poses, to train a neural network for classification. To enhance the 

synthetic data, we developed a Synthetic Motion Simulator that uses input parameters 

to generate a .npy matrix and video file of the skeletal movement. We found that this 

technology has significant potential in various fields, such as physical therapy and 

sports training, where it can monitor and evaluate body movements, improve perfor-

mance, and reduce the risk of injury. With the integration of AI and Deep Learning, the 

possibilities for this technology are limitless. We envision a future where synthetic data 

creation and neural network classification can be applied to many other areas, such as 

robotics and virtual reality, to name a few. Our work has highlighted the value of syn-

thetic data when real-world data is unavailable and the potential for neural networks to 

classify body movements accurately. Our system could be further improved with more 

advanced neural networks and increased training examples. With this in mind, we re-

main enthusiastic and optimistic about the future of this technology, and we are excited 

to see the potential it holds in improving human performance and quality of life. 

11 Further work 

As researchers, we are always looking to improve and enhance our work. While our 

current research has been successful in creating a synthetic data solution for body 

movement classification and a Synthetic Motion Simulator, we recognize that there are 

limitations to our work. Therefore, in future work, we plan to validate our framework 

fully by focusing on rehabilitation exercises done by patients and labeled by a panel of 

doctors who will award a quality rating. We have outlined several steps to enhance the 

accuracy and effectiveness of our system. Our first action is to expand the dataset and 

increase the diversity of choreography by adding more poses to the simulator. Secondly, 

we aim to create a deep neural network that integrates DTW classification into the sys-

tem. Lastly, we intend to improve the neural network's performance by incorporating 

an accuracy detection feature, which can classify more intricate movements. We be-

lieve that these actions will significantly improve our system's capabilities and make it 

a more valuable tool for physical therapy and sports training. By continuing to innovate 

and push the boundaries of what is possible with synthetic data and neural networks, 

we hope to create a more effective and accessible solution for evaluating and monitor-

ing body movements. 
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Abstract. This paper provides an in-depth exploration of the applica-
tion and effectiveness of neural distinguishers in cryptanalysis. Focusing
on the SLIM Cipher and building upon the work of Gohr, we aim to
explain why neural distinguishers outperform traditional differential at-
tacks and enhance contemporary methodologies. Our experiments cen-
tered on the 5th round of the SLIM Cipher, and aimed to understand
the influence of input difference, output difference, and previous round
differentials on the accuracy of the neural distinguisher. Our investiga-
tions revealed that the choice of input difference was significant, and a
singular focus on maximizing the differential probability might not al-
ways yield the best results. Neural distinguisher seems to observe not just
about the distribution of differences from the ciphertext was key insight
that was noticed, but also additional cryptanalytic features or proper-
ties. Furthermore, we found that the output difference in the ciphertext
played a critical role in the predictions made by the neural distinguisher.
By partially decrypting ciphertext pairs, we discovered that the output
difference from the penultimate round was a major factor impacting the
accuracy of the neural distinguisher. This insight led to an improved
methodology, yielding impressive accuracy results. This paper we try to
shed light on the complex workings of neural distinguishers and presents
valuable insights that can guide the future development and application
of these tools in cryptanalysis.

Keywords: Deep Learning · Differential Cryptanalysis · Cryptography
· SLIM Cipher · Neural Distinguisher · Machine Learning.

1 Introduction

Nowadays symmetric key cryptography puts a significant emphasis on ensuring
maximum security through well planned designs along with powerful arguments
which are centered around factors such as immunity against differential/linear
attacks and algebraic property analysis amongst others. Cryptanalysis plays an
essential role in verifying whether or not a cipher can be deemed secure, so
that only ciphers which have undergone comprehensive examination by experts
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are trusted as being secure enough for use. However recently lightweight cryp-
tography has seen an increase in proposals which has created a challenge for
comprehensive cryptanalysis.

Cryptanalysts focus on creating an effective model for the issue. In the past
decade, there have been significant advances in this area which has resulted in
improved designs in cipher. Given the shortage of cryptanalysts, there is an in-
creasing trend towards automating the attacker’s tasks. This can be oberserved
in trying to find differential and linear properties which are now modelled us-
ing Satisfiability/Satisfiability Modulo Theories [1] , Mixed Linear Integer Pro-
gramming [2] or Constraint Programming [3]. Specialized solvers can solve these
models reducing cryptanalysts to concentrate on efficient problem modeling. It
is an ongoing study that whether a tool that recognizes weaknesses or patterns
in ciphers can be developed which merely requires interaction with the cipher
and minimal input from cryptanalysts.

The integration of machine learning and deep neural networks into cryp-
tography has been a focus for researchers, aiming to optimize the outcomes.
A significant part of this effort involves the creation of advanced neural dis-
tinguishers, capable of differentiating between ciphertexts produced by differ-
ent encryption algorithms. In Gohr’s Neural Distinguisher model, presented at
the 2019 CRYPTO conference, emphasizes this effort as a unique neural distin-
guisher focused for lightweight cryptographic algorithms. Gohr’s research further
advanced the field by training the deep neural network on ciphertext pairs, half
of which were obtained from plaintext pairs which has a fixed input difference
and half of them are random. His trained network showed promising accuracy
in classifying these pairs, notably when cracking the SPECK-32/64 block cipher
[4]. By layering a key recovery method onto his neural distinguisher, Gohr devel-
oped an advanced key recovery attack that exceeded the performance of previous
research on SPECK-32/64, such as [5], [6].

As reported In June 2019, an incident involving a leading Internet of Things
(IoT) software management company found the importance of data privacy in
the creation of IoT or smart devices. The company was discovered to have stored
2 billion records of user data, pulled from customer’s home appliances, in an
unsecured database. This event demonstrates why data privacy should always be
a top priority when creating IoT or smart devices. Therefore, there is a need for
effective solution for lightweight cryptography which require less computation.

The term ”lightweight” doesn’t have any definition. However, it typically
refers to algorithms with smaller block and key sizes or that require less energy
[7]. Relatively new block cipher was proposed named as SLIM[8].

SLIM is a 32-bit block cipher with an 80-bit key that was created as an
incredibly light block cipher for devices with limited resources. It is a secure
and effective solution for applications with constrained memory and processing
power is what SLIM aims to deliver. A 16-bit subkey generated from the master
key is used in each of the 32 rounds of the cipher’s encryption and decryption
operations, which are based on a Feistel-like structure.
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In this , we focus on performing a broad cryptanalysis of the SLIM Cipher
based on the Crypto 19 Gohr Neural Distinguisher model. Our investigation
will cover the design and implementation of neural distinguishers, the method-
ology used to evaluate the security of the Gohr’s Neural Distinguisher model,
and a detailed analysis of the results obtained from the neural distinguisher.
Additionally, we will explore potential improvements and modifications to the
Gohr’s Neural Distinguisher model and the SLIM cipher in light of our findings
to enhance their security in real-world applications.

Our Contributions. In this article, we analyze how Gohr’s Neural Distinguishers
function when used with the SLIM-32/80 cipher (the 32-bit block 80-bit key ver-
sion of SLIM). Our main objective is to gain an understanding of their decision-
making processes by thoroughly analyzing sets of real and random ciphertext
pairs. The chances for recognition by these networks increases as certain differ-
ences occur with greater frequency - a key observation made during our study.
After looking for patterns closely, we can infer that differential conditions are
being deduced not just from ciphertext pairs but also from penultimate rounds
by these neural distinguishers. We propose a hypothesis that is tested through
our experimental research.

2 Preliminaries

2.1 Specification of SLIM

SLIM cipher is a symmetric encryption algorithm specifically designed for de-
vices, such as RFID tags. It features a 32-bit block similar to Feistel structure
block design with 32 rounds, which has 32-bit plaintext and ciphertext encrypted
using an 80-bit key. The blocks are divided as two halves of 16-bit, denoted
as Li and Ri, where ’i’ represents the ith round of the encryption or decryp-
tion process. SLIM incorporates four 4-bit S-boxes (originally adopted from the
PRESENT cipher [9]) and a bitwise permutation box (P-box). The algorithm
focuses on security and simplicity, achieving confusion and diffusion concepts.
Simplicity is attained through the compact size of the S-box and the use of sim-
ple internal operations.SLIM employs each 16-bit generated from the 80-bit key,
for a total of 32 sub-keys. The processes of encryption and decryption employ the
same key, the only distinction being that the order of applying sub-keys during
decryption is reversed compared to encryption. The fundamental architecture of
the SLIM algorithm is shown in figure 1 [8].

Single Round Processing: Understanding SLIM requires observation of
its layout in a single round. Firstly, divide the 32-bit input into two equal parts
referred to as Li and Ri. Next, through an XOR operation between Ri and
sub-key Ki, we get an outcome that passes through a substitution box before
forwarding it to a permutation process. Finally, this output undergoes another
XOR with Li - becoming inputs for upcoming rounds, while Ri switches over
to being left half input for next rounds. The processing at each round can be
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Fig. 1: SLIM encryption
Fig. 2: Architecture of the Neural
Distinguisher

represented by Equations 1 and 2.

Li = Ri−1 (1)

Ri = Li−1 ⊕ P (S(Ki ⊕Ri−1)) (2)

Substitution Layer: SLIM employs an S-box (refer to Table 1) that is
applied four times concurrently. For strong S-box that prevents linear and dif-
ferential attack and low area footprint in S-box, PRESENT S-box is chosen [9].

Permutation Layer: The P-box (refer to Table 2) of SLIM was designed to
have no fixed point (every input bit is moved away from its original position).[10]

Key Generation: SLIM has a complex key schedule for 32 rounds and a
block of 32-bit, it requires 32 sub-keys of 16-bit [8]. The generation is as follows:
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 1: PRESENT’s S-box used in SLIM [8].

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P(x) 8 14 2 9 12 15 3 6 5 11 16 1 4 7 10 13

Table 2: SLIM P-box [8].

The first five sub-keys are generated directly from the 80-bit key as K1,K2 till
K5, which is then split into two 40-bit parts, KeyMSB and KeyLSB, for separate
processing. K1 is first (least significant) and K2 is next, and so on. Each subkey
is 16 bits.

2.2 Differential Cryptanalysis

Differential cryptanalysis is frequently used by cryptographers as a reliable method
to evaluate algorithm security. This procedure involves carefully examining input-
output pair differences. We require a thorough literature review that covers the
fundamentals of applying differential cryptanalysis for assessing block ciphers
and earlier work using it on the SLIM cipher in order to make sure that this
study fully covers all of the bases.

2.3 Deep Neural Network

The main goal of differential cryptanalysis involves identifying specific differen-
tial characteristics that exhibit higher than expected probabilities than random
processes. Deep Neural Networks (DNNs) has changed machine learning and
artificial intelligence. Their structure is based on multiple interconnected neu-
ron layers that model complex patterns found in high dimensional data sets.
DNN aims to find optimal parameters for a given dataset and depend on op-
timization algorithms like stochastic gradient descent, where hyper-parameters
play a crucial role in controlling the learning process. Training data empow-
ers deep neural networks (DNNs) in establishing accurate non-linear features.
However, these characteristics are not robust meaning small input noise may
confuse the model. Key building blocks of DNNs include linear neural networks,
one-dimensional convolutional neural networks, activation functions, and batch
normalization. The depth of these networks also plays an essential role in their
capacity for deep learning by facilitating the identification of complex relation-
ships which are not feasible using traditional methods. By using back propaga-
tion algorithms throughout the training process they continuously refine neuron
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connections while minimizing differences between predicted and actual outputs.
With its reliance on significant amounts of data and computational resources,
the process involved in training DNNs poses formidable obstacles from those
lacking these necessities.

2.4 Neural Distinguisher

Researchers are focusing on creating ”neural distinguishers” as one potential
means of enhancing cryptanalysis procedures while working with encrypted data.
These strategies analyze data using artificial intelligence and deep learning tech-
niques, and the preliminary results are encouraging. To learn more about this
expanding topic, completing a full literature survey is important with a specific
focus on examining how neural distinguishers have been developed and employed
in cryptography to analyze block ciphers.

2.5 Gohr’s CRYPTO 2019

Deep Learning has recently driven remarkable advancements in various com-
plex areas. These include tasks like language translation, enabling autonomous
vehicles, and mastering complex board games at a level surpassing human abil-
ities. In the field of cryptography, the practical application of machine learning
techniques has been mainly targeted at side-channel analysis.

In Crypto 19, Gohr published a Deep Learning based cryptanalysis work on
SPECK-32/64 [11].

Overview: The Gohr’s Neural Distinguisher model, introduced at the CRYPTO
19 conference, represents concepts together of machine learning and conventional
cryptanalysis methodologies. Utilizing a Convolutional Neural Network (CNN),
a form of deep learning, it creates a neural distinguisher trained to differentiate
pairs of ciphertext that originated from plaintext pairs following a specific in-
put difference from random pairs. The deep structure and non-linear activation
functions of the CNN allow the neural distinguisher to identify complex patterns
and dependencies in the data. When applied to the SPECK cipher, this novel
approach to differential cryptanalysis primarily distinguishes between real pairs
of plaintext with a fixed input difference (0x0040/0000) and random pairs after
encryption. Remarkably, the Deep Neural Network (DNN) based distinguisher
outperforms traditional methods when tested on 5 to 8 rounds of SPECK-32/64.

Gohr’s Neural Distinguisher: Figure 2 presents Gohr’s Neural Distinguisher,
a deep neural network comprised of several key components:

– Block 1 includes a 1D-Convolutional Neural Network with a kernel size of
1, followed by a batch normalization process and a Rectified Linear Unit
activation function.
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– Blocks 2-i contain between one to ten layers, each layer having two 1D-CNNs
with a kernel size of 3, with batch normalization and a ReLU activation
function.

– Block 3, includes as a non-linear classification block, composed of three per-
ceptron layers separated by two batch normalization and ReLU functions,
finishing with a sigmoid function [12].

The encryption process yields a 64×1 matrix of binary values derived from
the ciphertext pair, which is then fed as input to the model. This matrix is
subsequently reshaped into a 4×16 form. Each row of this matrix represents a
16-bit value, arranged in the sequence: Cl, Cr, C0l, C0r. Cl represent 16 bits of
left and Cr represent right 16 bits of the first ciphertext and C0l represent 16
bits of left and C0r right 16 bits of the second ciphertext. This is then followed
by a permutation operation that reorganizes it into a 16×4 structure.

In the first convolutional block (Block 1) as shown in 3, the input is the
structured 16×4 matrix. This input is then processed through a convolutional
layer equipped with 32 filters. The kernel size for this 1D Convolutional Neural
Network (1D-CNN) is set to 1. The 1D CNN transformation applies to (Cl, Cr,
C0l, C0r), resulting in a new representation as filters (filter1, filter2, until 32nd
filter) .

Each filter represents a combination of the features (Cl, Cr, C0l, C0r), which
is determined by the input values and weights derived by the 1D-CNN after
applying the ReLU activation function.

Fig. 3: Representation of Independent Blocks

The residual blocks of 10 layers - Blocks 2-i as shown in 3 , each have two
1D-CNNs with a kernel size of 3, padding size of 1, and stride size of 1. These
parameters ensure that the length (or size) of the input data is preserved across
layers. In the residual block the output from the initial block is linked with the
input and is merged with the output from the subsequent layer and conclusion
of each layer, the input signals are not wiped. The final output from a residual
block is in the form of a feature tensor with dimensions 16×32.
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The final classification block as shown in 3, receives the flattened output ten-
sor from the previous block as its input. This input, which is a 512×1 vector, is
then processed through three layers of a Multi-Layer Perceptron (MLP). Each
of the first two layers in this MLP utilizes batch normalization and a ReLU ac-
tivation function. The final layer, however, applies a sigmoid activation function
to perform binary classification. The results from the Gohr’s model for the 5th

round, the N5 distinguisher achieved an accuracy of 0.929 (± 5.13 ×10−4) with
a true positive rate of 0.904 (± 8.33 ×10−4) and a true negative rate of 0.954
(± 5.91 ×10−4) [11].

2.6 One-dimensional Convolutional Neural Network

The 1D-CNN performs a convolution operation on a constant multi-temporal
input signal [12]. The 1D-CNN can be viewed as several linear neural networks,
each corresponding to a filter, working on different sub-parts of the input, which
is called the kernel, slides along the input with a specific stride. The starting
and ending points of this stride are defined by the padding..

2.7 Activation Layer

A neural network’s activation layer is responsible for applying a non-linear func-
tion to the output of the previous layer. This non-linearity allows the network
to understand complex correlations between model complex decision boundaries
and input features. Activation functions like ReLU and Sigmoid has a important
role in the learning capability and overall performance of the neural network.
ReLU is a simple activation function that outputs the input value if it’s positive
and zero if it’s negative. This non-linear function is computationally efficient
and helps to mitigate the vanishing gradient problem during back-propagation.
Sigmoid, on other hand, maps any input value to a range between 0 and 1. It is
often used for binary classification problems in the output layer.

3 Methodology

The paper [12] concentrates into the workings of neural distinguishers in crypt-
analysis, with a particular focus on why Gohr’s models outperform traditional
differential attacks and enhance the state-of-the-art methodologies. By conduct-
ing a series of experiments and analysis, researchers attempted to unpack the
high performance of these distinguishers on multiple rounds of SPECK-32/64.
In the paper [11] they have claimed that the difference 0x0040/0000 has been
chosen based on its ability to deterministically transit to a difference with a
low Hamming weight after one round. One significant insight was the identifica-
tion of the input difference as a important factor in the performance of neural
distinguishers. When the input difference was altered, and the distinguishers
were only given access to the difference distribution, their performance declined.
Moreover, the distinguishers, when trained only on the difference between two
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ciphertexts, didn’t perform as well as when provided with the actual ciphertext
pairs. This implies that Gohr’s Neural Distinguishers also potentially exploit
additional cryptanalytic features or properties.

In our effort to understand the workings of the neural distinguisher, we have
carried out a few experiments on SLIM Cipher in a cryptanalysis perspective.
Our analysis revolves around the neural distinguisher’s behavior on the 5th round
of the slim cipher. Initially we begin with an experiment to validate our hy-
pothesis that maximizing differential probability when selecting a differential
characteristic might not always be the ideal approach. We’re seeking to deter-
mine if this strategy always holds true, or if there might be cases where other
strategies could yield better results.Then the experiment focuses on the neu-
ral distinguisher’s output difference. We’ll be examining the significance of this
output difference and how it influences the overall function and efficiency of
the neural distinguisher. By understanding the role and importance of output
difference, we can gain a deeper understanding of how the neural distinguisher
operates. Then we try to understand the effect of previous rounds on the accu-
racy of the 5th round. We’re specifically interested in how the output differences
from the penultimate rounds may impact the overall accuracy. We assume that
understanding these dynamics can offer us key insights into the mechanisms of
the neural distinguisher.

In the process, we’re also planning to explore the significance of the frequency
of the output difference, as this may offer another layer of understanding of how
the neural distinguisher operates and performs.

3.1 Analyzing Input Difference

Based on the differential trial obtained in the paper [12], we have identified that
the input difference with high probability in the 5th round of SLIM cipher is
D804/0040 with probability of 2−8. To understand the importance of difference
distribution we perform (Experiment A). With 106 ciphertext pairs with 100
set of keys and the input difference as D804/0040 we trained the neural distin-
guisher. Then conducted multiple test cases to understand that similar to speck
cipher, SLIM cipher performed better with 0040/0 compared to D804/0040 as
shown in table 3. So this adds to the understanding that limiting to utilizing
only the difference distribution, wasn’t the best strategy. In the course of the
experiment, it was also discovered that a neural distinguisher trained on a plain-
text of size 106 encrypted with merely 10 or 100 keys could predict with the
same accuracy that of a dataset of 106, each encrypted with a unique random
key 4.

3.2 Analyzing Importance of Output Difference

Continuing with the analysis of the cipher through the perspective of the neural
distinguisher, we recall the structure of the model. Since final layer is a sigmoid
activation function, which produces outputs ranging from 0 to 1. Based on the
output of this function, the neural distinguisher’s predictions. For instance, an
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Difference Rounds Epoch Depth Accuracy TPR TNR

0040/0 5 200 10 0.814± 1.02× 10−3 0.829± 1.28× 10−3 0.800± 1.29× 10−3

D804/0040 5 200 10 0.607± 3.74× 10−3 0.501± 5.53× 10−3 0.706± 5.36× 10−3

Table 3: Comparison in Input Difference

Difference Rounds Number of Keys Dataset Size Accuracy

0040/0 5 10 106 0.799± 7.25× 10−3

0040/0 5 100 106 0.814± 1.02× 10−3

0040/0 5 Random Keys (106) 106 0.804± 4.10× 10−3

Table 4: Comparison in keys regards to Input Difference

output score of 0.5 or higher leads the neural distinguisher to categorize the
data as a ’real pair’. Conversely, an output score that falls below 0.5 prompts
the neural distinguisher to label the data as a ’random pair’. For understanding
neural distinguisher we divide the ciphertext pairs based on extreme scores.
These include scores greater than 0.9 is categorized as ’good scores’. As the
plaintext pair, we are using a fixed input difference of 0x0040/0 and believe that
features learned by neural distinguishers are related to the difference, So we
concentrate on differentials of the ciphertext pairs. To do this we perform next
experiment (Experiment B):

1. With 106 5-round SLIM we create 5 lakh real ciphertext pairs, extract the
set Good. We obtained around 1 lakh Good set.

2. Then we calculate the output difference of the cipher text and sorting based
on their occurrence frequency.

3. For each distinct differential value δ:

(a) Generate 104 distinct 32-bit random numbers and apply the difference δ
to get 104 different numbers with the difference.

(b) Input the pairs with δ into the 5-round neural distinguisher to generate
the scores.

(c) Note total count of pairs with a score ≥ 0.5.

We executed this experiment for the top 1000 differences δ with high fre-
quency. In this process, we found out that the neural distinguisher could predict
the values based on the output difference of SLIM cipher where out of 1000 al-
most 99% or 100% pairs have a score ≥ 0.5 and above 95% of the pairs have a
score ≥ 0.9. This demonstrates that the difference in output is a vital factor for
the neural distinguisher’s prediction ability in terms of ciphers.It also show some
indications that a neural distinguisher is more likely to identify a difference if it
is more probable. Table 5 shows the top 25 difference and accuracy with high
frequency.
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No Difference Frequency Accuracy

1 0006/2151 17 100%

2 0006/2153 17 100%

3 6006/311B 15 100%

4 0900/80E6 11 98%

5 2006/2359 11 98%

6 6006/3319 11 100%

7 6006/331B 11 100%

8 6006/3119 9 99%

9 0006/01D1 8 100%

10 0100/04F6 8 97%

11 0802/0440 8 100%

12 0900/04E6 8 97%

13 0900/84E7 8 93%

14 2000/02EE 8 100%

15 4006/235B 8 100%

16 6002/1019 8 97%

17 6006/309B 8 99%

18 6006/3299 8 99%

19 0100/00F7 7 97%

20 0100/84F6 7 100%

21 6006/3353 7 100%

22 0006/20D3 6 100%

23 0008/51A0 6 99%

24 0014/0D72 6 100%

25 00A0/0055 6 94%

Table 5: Difference Frequencies and Accuracies

3.3 Impact of Penultimate round

We further explore deeper than simply with the differences at the 5th round.
Our approach involved partially decrypting the ciphertext pairs from “Good”
set for several rounds and then testing on these partially decrypted pairs. We
looked at the difference of round 4 (after decrypting 1 round respectively). We
analyzed the 5 round SLIM cipher with output difference of the 4th round in
this experiment (Experiment C).

1. For every pair of ciphertexts in the set G, we decrypt i rounds utilizing their
corresponding keys. Then, calculate the corresponding difference. We can
then name these differences as δ5−i.

2. Now we encrypt another 105 plaintext with a difference of 0x0040/0 with
100 random keys. Then we decrypt them for one round and check if the pairs
of differences. If the pair’s of differences is in δ5−i, we keep the pair else we
discard.

3. The non discarded pairs are encrypted and tested using the neural distin-
guisher.
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For the 4th round, using i = 1, we generated 210438 distinct differences,
resulting in a total dataset size of 106. Upon testing this dataset, which also
consisted of 106 entries, we refined it using the output difference of round 4,
leading to a refined dataset size of 250623. This refined approach allowed us
to achieve remarkable precision, with 99.99% of these ciphertext pairs scoring
above 0.5, and 99% of those being true positive pairs.

3.4 Impact of Frequency in Output Difference

To further understand the frequency and distribution of output differences in
ciphertext pairs resulting from five-round and six-round encryptions and their
implications for neural distinguishers and cryptanalysis, we perform an experi-
ment.

In Experiment D, we follow these steps:

– We generate a dataset comprising 106 entries, divided equally between ran-
dom values and values encrypted using the Slim cipher with a fixed differ-
ence. This dataset represents the output of both five-round and six-round
encryptions.

– From this dataset, we isolate only the ’real’ ciphertext pairs, i.e., those pairs
originating from plaintexts with a fixed input difference.

– For both the five-round and six-round encryption data, we calculate the
output difference for each ciphertext pair. This can be done using the XOR
operation between the two ciphertexts in a pair.

– We then determine the frequency of each output difference in the ciphertext
pairs across both five-round and six-round encryption datasets.

We trained a neural distinguisher with Round 6 ciphertext pair and we got
an accuracy of 51%. The highest frequency in round 5 is 18, whereas the highest
frequency in round 6 is just 2. So the difference that is being repeated is very
less. From this, we can consider that the frequency of output difference could
have a major impact on the learning of the neural distinguisher. A significant
difference in the frequency of the output difference between two datasets could
indicate a difference in the underlying patterns or structures within the data.
The file with the higher frequency of a particular output difference (Round 5)
might suggest that the corresponding input difference is more likely to occur
under the cipher’s operations. If certain output differences occur more frequently,
the neural distinguisher will likely learn to recognize these patterns, which can
improve its ability to differentiate between different types of data. From this,
we can say high frequency of output differences in a dataset may enhance the
neural distinguisher’s learning capabilities by highlighting recurrent patterns.
This can lead to improved differentiation between various data types and bolster
the overall cryptanalysis process.

4 Results

Our experimental investigation on the application of neural distinguishers in
cryptanalysis yielded significant results.
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1. We found that the choice of input difference played a major role in the per-
formance of neural distinguishers. In the first set of experiments (Experiment
A), we observed that using an input difference of 0x0040/0 led to an accu-
racy of 0.814, compared to D804/0040. This result suggests that the choice
of input difference should not be restricted to those with high probabilities
in the differential distribution.

2. We also investigated the effect of the number of keys used for encryption.
We found that a neural distinguisher trained with a plaintext of size 106

encrypted with merely 10 or 100 keys could predict with similar accuracy to
a dataset of 106, each encrypted with a unique random key.

3. Experiment B indicated the strong impact of output differences on the neural
distinguisher’s prediction ability. Specifically, we found that among the top
1000 output differences with high frequencies, nearly all had a score of ≥
0.5, suggesting that the output difference was a critical factor for the neural
distinguisher’s prediction ability.

4. We also observed the potential influence of prior rounds on the accuracy of
the neural distinguisher. In Experiment C, partially decrypting the cipher-
text pairs and considering the output difference from the penultimate round
significantly improved the accuracy. We obtained remarkable precision, with
99.99% of the tested ciphertext pairs scoring above 0.5, and 99% of those
being true positive pairs.

5. Experiment D demonstrated that a higher frequency of output differences
in a dataset, as seen in the 5-round encrypted data, can significantly en-
hance the learning and accuracy of the neural distinguisher, underscoring
the relevance of output difference frequency in training neural networks for
cryptanalysis tasks.

Therefore, these results deepen our understanding of neural distinguishers
operation and enhance their implementation in cryptanalysis. By considering
factors such as the input and output differences and the effects of previous
rounds, we can significantly improve the performance and accuracy of neural
distinguishers.

5 Conclusion

Our research was aimed to increase our understanding of the role and behavior
of neural distinguishers in cryptanalysis, focusing primarily on the SLIM cipher.
We discovered that input difference, output difference, and the decryption of
previous rounds play significant roles in the distinguisher’s performance. Rather
than merely choosing input differences with high probabilities in the differential
distribution, diversifying these can strengthen the neural distinguisher’s perfor-
mance. We found evidence that a higher frequency of output differences directly
correlates with higher accuracy, and decrypting even a single round can yield
valuable attributes, thereby enhancing accuracy. Interestingly, the number of
keys utilized for encryption did not significantly influence the accuracy, render-
ing the training of neural distinguishers more efficient on SLIM cipher. These
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findings suggest promising applications of neural distinguishers in cryptanalysis,
encouraging further research for an in-depth understanding of these
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Abstract. In this paper we aim at predicting the distribution of time
to weaponization of vulnerabilities. We train an XGBoost model with
events related to the life-cycle of vulnerabilities to make improvements
of the predicted distributions over time, as more data becomes available.
The distributions are then compared with other methods of predicting
exploits, such as EPSS.
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1 Introduction

Assessing the risk posed by system vulnerabilities is crucial for determining the
order in which they should be patched, as the process of patching systems can
be time-consuming and may involve maintenance costs [1, 5]. This research pa-
per focuses on the time it takes for a vulnerability to be weaponized and how
its distribution changes over time. These factors can serve as indicators that the
risk associated with the vulnerability is increasing or decreasing. Unlike previous
studies, our approach aims to incorporate dynamic information about vulner-
abilities, including data from advisories, online forums, and other sources that
publish information after it becomes available through the National Vulnerabil-
ity Database (NVD).

Other studies have tackled this challenge from alternative perspectives, such
as Expected Exploitability (EE) [4] and the Exploit Prediction Scoring Sys-
tem [2, 3]. EE provides the probability of a functional exploit being developed
based on metrics related to exploit code and social media, in addition to vul-
nerability data. Similarly, the Exploit Prediction Scoring System predicts the
likelihood of exploitation in the wild. The current version (EPSS v3) relies on
proprietary features and observations indicating activity related to the vulnera-
bility. Both EE and EPSS utilize dynamic vulnerability data. However, they do
not consider the distribution of time until weaponization.

Gaps in prior work. EPSS provides the probability of exploitation occur-
ring in a fixed window size of 30 days, whereas EE provides the probability of
a weaponization occurring any time in the future, without considering any time
frame. We envision that these limitations, of considering a fixed window size or
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an infinite time horizon, open up opportunities for investigation, which we begin
to tackle in this preliminary report.

Our contribution. In summary, our key contribution is a novel approach to
estimate the distribution of time until first weaponization or first exploitation in
the wild, given previous information about events associated with a vulnerability.

Outline. The rest of this paper is organized as follows. In Section 2 we
present our challenges and insights. Then, Section 3 presents our methodology,
including the production of the ground-truth. Finally, Section 4 presents our
evaluation and concluding remarks.

2 Challenges and Insights

2.1 Where to Find Data About Vulnerabilities?

Challenge: When it comes to predicting weaponization, numerous challenges
arise. One primary challenge is the acquisition of meaningful data to train the
model. Many valuable sources of information are inaccessible due to paywalls,
making it difficult to obtain high-quality, open resources.

Insight: The approach involves gathering data from diverse sources, includ-
ing the National Vulnerability Database (NVD) and the resources linked from
NVD.

Details: The NVD serves as a central hub in the vulnerability life cycle. To
ensure that all data remains current, we have developed crawlers and parsers
that automate the extraction of information from both NVD and the various
external resources linked to each vulnerability page. Subsequently, the extracted
data is stored in a structured format within a PostgreSQL database.

2.2 How to Cope with Static and Dynamic Data?

Challenge: The data pertaining to vulnerabilities typically falls into two cate-
gories: static and dynamic. Static data remains unchanged after its initial pub-
lication in NVD, while dynamic data relates to events that occur and are added
over time following the disclosure of the vulnerability.

Insight: To effectively handle the different types of data, static and dynamic
information should be treated differently. Static data is stored in a single record
per vulnerability, whereas dynamic data is stored in a single record per event.

Details: All the data published by NVD regarding each vulnerability is con-
sidered static, as it originates from the initial analysis and does not change
or evolve in the future, except for external resource links. On the other hand,
dynamic or non-static data is collected after the publication date from vari-
ous sources, including vendor-specific advisories, internet forums, ExploitDB,
GitHub, and other general sources.

The static data is stored in our database as one record per vulnerability, while
the dynamic data is stored as one record per event. Extracting data from NVD
is relatively straightforward since they offer an API that provides structured
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JSON format. However, obtaining data from other sources, such as publication
dates of events, can present challenges, highlighting another obstacle in the data
acquisition process, as further detailed next.

2.3 How to Determine Dates of Events?

Challenge: How can we accurately determine the dates when vulnerabilities are
weaponized, as well as the dates for other types of events, in order to create a
comprehensive temporal series?

Insight: When dates are available from external resources, utilize those
dates. If such dates are not provided, employ heuristics to estimate the dates.

Details: To address this challenge, we employ multiple levels of data extrac-
tion techniques. Initially, we strive for precision by utilizing crawlers and parsers.
We extract information from references provided in NVD and identify the top
20 most frequently used domains. Subsequently, we create tailored crawlers for
each domain, taking into account the variations that exist within each one. Some
domains may offer APIs, while others necessitate careful parsing of the web page
itself.

The final level of extraction pertains to NVD itself. We delve into the log
of changes maintained by NVD for each vulnerability. This log enables us to
determine when a reference associated with an event is added to the vulnerability
web page. By examining these changes, we can deduce relevant dates for the
events.

By employing this multi-level approach, we aim to capture accurate dates
for weaponization and other events, ensuring the creation of a comprehensive
temporal series.

2.4 How to Leverage Dynamic Information about Events to Assess
Time to Weaponization?

Challenge: Continuous reporting of events related to vulnerabilities impacts
the time it takes for weaponization. The challenge lies in effectively utilizing
these events.

Insight: Consider the information associated with each event and take into
account previous events. Construct a dataset where each row corresponds to an
event, and each column represents features of that event, including cumulative
information about prior events.

Details: Events associated with vulnerabilities serve as the fundamental
units of analysis. These events encompass various occurrences, including weaponiza-
tion events. The primary objective is to develop a model that predicts the date
of the first weaponization event, utilizing static data about the vulnerability and
potentially dynamic data. Furthermore, the aim is to obtain the complete dis-
tribution of dates until the first weapon release, including their corresponding
probabilities, rather than solely focusing on the most probable date.

To achieve this, we leverage the multiple events linked to a vulnerability
through event-driven training and inference. In our training set, we organize
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events into tables grouped on a daily basis. Each row in our dataset corresponds
to a day when an event occurred, in contrast to previous approaches where rows
corresponded to vulnerabilities rather than individual events. To handle dynamic
features associated with each event day, we incorporate the count of previous
events associated with the given vulnerability. Additionally, we retain the last
date of significant events. The objective is to capture the notion that as the
number of events increases, the likelihood of an imminent weapon release also
rises.

Other studies, like EPSS, also employ a count of the number of citations to
a specific CVE, resulting in 17 features that encompass various reference types.
However, in the training set of EPSS, they have a single static observation per
CVE, whereas our training set comprises multiple observations per CVE, with
each observation representing an event. This enables us to capture temporal
trends over time.

2.5 How to Infer Distributions of Time to Weaponization using
Predictions from Classifiers?

Challenge: When considering the time to weaponization, it is important to
establish a distribution for each point in time. The challenge lies in determining
how to generate a distribution from the class predictions, given a vulnerability
and a timestamp.

Insight: Construct a conditional cumulative distribution function (CDF) for
the time to weaponization for each class. Combine these CDFs using the weights
derived from the multiple classifier outputs.

Details: We individually classify events into multiple classes. Each class rep-
resents a specific range of times to weaponization, allowing us to create a CDF
for each range. Although these classes are mutually exclusive, when classify-
ing an event, there is a probability associated with each class. By utilizing the
probabilities of these classes, we can merge the conditional CDFs into a single
CDF.

While the shapes of the individual class CDFs remain unchanged after train-
ing, we assign weights to each of them and combine them to create a highly cus-
tomized final combined CDF. Additionally, classes that are closer to the event’s
origin date possess a higher level of resolution compared to those further away
from the origin. This means that the final CDF provides greater detail near the
event date while gradually losing precision as it moves further away from the
origin. This approach allows for the creation of unique CDFs that offer enhanced
detail where it is most crucial.

3 Methodology

In our methodology, we utilize XGBoost to predict the time it takes for weaponiza-
tion to occur, where time is measured in intervals given by the 26 classes de-
scribed above. Each class corresponds to a conditional CDF of time to first
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Fig. 1. Proposed training pipeline.

Fig. 2. Inference of CDF of time to weaponization.

weaponization. By combining the results from XGBoost with the conditional
CDFs, we generate an unconditional CDF that provides insights into the prob-
ability of the first weapon being released within a given timeframe after a
vulnerability-related event. Figure 1 provides an overview of the entire method-
ology.

3.1 Ground Truth

The ground truth consists of 26 distinct classes. Each of the events in our dataset
is assigned to a specific class. Such mapping is encoded using one-hot encoding.
The distribution of vulnerability-related events across these classes can be ob-
served in Figure 3. Among the classes, there are 12 negative classes denoting
weapons that are released prior to the designated event. Additionally, there is
one class specifically for day-0 events, signifying that the weaponization event
coincides with the considered event. Furthermore, there are 12 positive classes
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Fig. 3. Distribution of the vulnerability events over the classes of the ground-truth

indicating that the exploit is released after the event date. Finally, there is one
class dedicated to events of vulnerabilities that do not have any associated ex-
ploits.

The data in our dataset is distributed across multiple classes, as depicted in
Figure 3. This distribution can serve as a prior distribution for our data across the
classes. Moreover, we possess information regarding the internal distribution of
data within each class. We organize this information into conditional cumulative
distribution functions (CDFs), with one CDF dedicated to each class. Subse-
quently, we employ XGBoost to combine these conditional CDFs and generate
a final CDF, as elaborated further in the following sections.

3.2 XGBoost for Classification

The XGBoost model is trained to classify dates surrounding the event related to
the vulnerability into 26 distinct classes. The distribution of days in each class
varies based on their proximity to the event date. Classes representing dates
closer to the event have a smaller range of days, while those further away have a
larger range. This design allows the model to exhibit higher precision in predict-
ing dates near the event and gradually decrease precision as the prediction moves
further from the event. Additionally, there is a specific class that represents a
date infinitely into the future, indicating that no exploit will occur following the
given event.

In the prediction array, each of the 26 classes is individually represented.
This corresponds to the one-hot encoding scheme used in the ground truth.
Moreover, when applying the XGBoost model, weights are generated for each
class, reflecting their pertinence in the predictions.
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3.3 Normalization of Class Pertinences

Once we obtain the prediction array, we proceed to normalize the values within
the array to ensure their sum equals one. Since our training data consists solely
of zeros and ones (one-hot encoding) the majority of predictions generated by
XGBoost are also between zero and one. In the rare instances where XGBoost
produces negative values, we replace them with zeros, as our experiments reveal
that their absolute values never exceed 0.01.

Note that when provided with an event associated with a vulnerability, the
proposed predictor will present multiple weighted classes of date ranges in which
weaponization is likely to occur, rather than a single class denoting the most
probable outcome.

3.4 Building a CDF Per Class

Next, we proceed to construct the Cumulative Distribution Function (CDF).
Each class consists of a distinct set of events that truly belong to that class.
For example, the zero-day class encompasses all events that occurred on the day
of weaponization. In these events, the ground-truth value for the weaponization
day is 0. We refer to these events as zero-day events, which belong to class 0. It
is important to note that each class corresponds to a specific set of events, and
for each event, we have its corresponding relative date of weaponization, even if
the date is infinite.

Each set of events that belong to a class can be utilized to derive a CDF rep-
resenting the time to weaponization. In fact, each class corresponds to a specific
time window, and each event that falls within that window is represented by an
integer denoting the number of days until weaponization within that window.
The support of the CDF encompasses the range of the time window, while its
shape captures the distribution of events within that window.

3.5 Combining the CDFs to Produce a Final Time to Event CDF

We aggregate the individual CDFs described above to generate a unified CDF
that represents the complete distribution of the probability of the first weaponiza-
tion. Let F (x) denote the combined CDF. We express F (x) as a weighted sum:

F (x) =

I∑
i=1

wiFi(x) + bi, (1)

where wi represents the weight assigned to the i-th CDF. Additionally, we define
bi as:

bi =

i−1∑
j=1

wj . (2)

It should be noted that wI corresponds to the probability that the vulnerability
will never undergo weaponization, while bI represents its complement, with wI =
1− bI .
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3.6 Summary

In summary, our approach involves constructing a composite CDF by combin-
ing multiple conditional CDFs, using the weights generated by XGBoost. This
process can be visualized as multiplying the height of each conditional CDF by
the predicted probability for its corresponding class and stacking them together.

In practical terms, when an event occurs, our methodology generates a CDF
that represents the distribution of the time to weaponization. This is achieved
by leveraging two main components: 1) the XGBoost predictions, which deter-
mine the vector of weights wi, and 2) the pre-computed shapes Fi(x) that were
obtained during the training phase.

4 Evaluation

4.1 Model Training

To traing XGboost we (1) separate data in training and test sets with stratifi-
cation on the target class, 25% for training, and 75% for test; (2) tune hyperpa-
rameters using a grid-search method; (3) use XGBoost build-in cross-validation
with 7 folds and (4) select best model parameters and collect prediction metrics
on test set

We determined the number of trees by utilizing the “early stopping rounds”
parameter of XGBoost. This parameter specifies that if the validation errors start
increasing for a certain number of rounds, the model should stop generating more
decision trees.

4.2 Transfer Learning: Bridging Time to Weaponization and Time
to Exploitation

To evaluate the proposed model in a concrete setting, we explore the concept
of transfer learning, specifically examining the relationship between time to
weaponization and time to exploitation.

In real-world scenarios, exploitation relies on the availability of an exploit
that can be utilized as a weapon. Therefore, any prediction of the first weaponiza-
tion also serves as a prediction for the earliest possible date an attack could
occur.

Our findings indicate a strong correlation between our predictions and the
EPSS (Exploit Prediction Scoring System) scores of significant vulnerabilities.
This correlation is expected since EPSS evaluates the likelihood of exploitation
in the wild, indicating the probable existence of an exploit. Consequently, dates
associated with high EPSS probability values are likely to exhibit a substantial
increase in the probability of exploit existence.

Figure 4 illustrates a comparison between the CDFs of multiple events for
CVE-2021-44228 and the corresponding evolution of EPSS scores. This vulner-
ability, associated with Log4j, enables attackers to take control of the affected
device.
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The initial event, which occurred on day 0, corresponds to the publication of
the vulnerability in the National Vulnerability Database (NVD). According to
our model, at this stage, there is a 50% probability that the vulnerability has
already been weaponized. Subsequently, for each subsequent event, our proposed
model is utilized to generate an updated cumulative distribution function (CDF)
of the time to weaponization.

As depicted in Figure 4, we observe a gradual convergence of the CDFs
associated with additional events towards the EPSS curve. The EPSS curve itself
is derived from multiple point estimates of the EPSS collected over time. Our
findings suggest that this collection of EPSS values, obtained from a black box
model, could potentially serve as a limiting CDF for the time to weaponization,
which is derived from public events gathered from NVD, as the number of events
increases. Conversely, by utilizing public data acquired from NVD, one could
infer the limiting behavior of the EPSS curve given a sufficient number of events
associated with the vulnerability.
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Abstract. Industry 4.0 drives the ICS and SCADA systems to utilize
the cloud for its significant benefits. New models, designs, and applica-
tions of the traditional ICS systems incorporate the cloud to contribute
to and optimize the industrial process. In this paper, we propose a novel
model that uses avatar processes for devices in the ICS system, like the
PLCs. The avatar runs on the cloud and executes PLC tasks. The avatar
can perform heavy computations that were not possible before, especially
for legacy devices that are common in these systems. We also describe a
security architecture for our system that thwarts cyber security threats
that may arise from attackers on the cloud. Furthermore, we introduce a
new decentralized architecture that combines blockchain with avatars to
secure our ecosystem. In total, our system improves the industrial pro-
cess and allows engineers to easily add complex logic to their (possibly
heterogeneous and legacy) systems.

1 Introduction

An industrial control system (ICS) is a hardware and software system with net-
work connectivity that automates an industrial process. These systems are very
common in factories and critical infrastructure facilities such as power plants,
water treatment, oil and gas processing, and transportation systems. They mon-
itor and control the industrial processes and they are vital to modern life.

According to the Purdue model, a traditional ICS system consists of four
levels, as can be seen in Fig. 1. The model consists of four layers:

1. The Field Layer contains the industrial equipment, e.g., turbines, generators,
water pumps, centrifuges, and more.

2. The industrial equipment is controlled by the PLCs that reside in the Control
Layer.

3. The Supervisory Layer consists of SCADA HMIs and engineering stations.
The engineering stations allow the engineers to program and configure the
PLCs, while the SCADA HMIs allow the operators to monitor and control
the industrial process.

mailto:danknera@cs.bgu.ac.il
mailto:dolev@cs.bgu.ac.il
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4. The Enterprise Layer is a typical IT network for business systems such as
ERP and SAP. It also contains the historian, which stores ICS data.

Note that in most organizations, firewalls (that are not illustrated in Fig. 1)
forcibly separate between the layers, and certainly between the Enterprise Layer
and the Internet.

Nowadays, however, some express reservations about the traditional model.
As part of the fourth industrial revolution, a.k.a. Industry 4.0, new technologies
for the system are moving to the cloud [5]. This allows organizations to improve
the industrial process, be more effective, and keep up with the pace of the in-
dustry. Enhancing the computation and functionality capabilities, rather than
replacement of the legacy controlled devices and controllers that already exist
on the factory floor.

Several models were proposed to define the interactions between the cloud
and the ICS system [10]. Some systems, which are called open-loop systems,
store ICS data on the cloud (e.g., the historian is moved to the cloud). The
more interesting models, which are called closed-loop systems, allow the cloud
to make decisions that affect the industrial process. We define a novel approach
for a closed-loop system that allows the PLC itself (or, parts of it) to run on the
cloud.

We propose a new framework for ICS systems that uses avatar process [3,6]
– processes that represent each PLC (and possibly each controlled device on
the factory floor in the cloud), in the cloud. The avatar communicates with the
device it represents and may tune or even replace the program running on that
device.

We focus on separating the real-time portions of programs to run on the PLCs
that reside on the industrial site, while migrating the non-real-time aspects to
avatars that run on the cloud. The cloud avatar can be sophisticated (having the
cloud computation and communication resources) and may implement complex
algorithms and expensive security layers. Avatars can also be created for field
devices and sensors (those that use TCP/IP). The avatar of a sensor, for example,
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may record all the readings of the sensor and stop its operation if it is faulty
and alike.

This architecture is also useful to enhance computing devices of cars or IoT
devices. As the devices have limited computation power and/or become obsolete,
they can be enhanced by offloading tasks to the avatar in the cloud, leaving only
the real-time portions on the devices.

The cloud provides substantial benefits for the industry. It contains redun-
dant, expandable hardware and software components that are well connected
and can be programmed to fit changing situations (e.g., heterogeneous devices,
controllers, and extreme conditions such as disaster recovery) and have less en-
ergy and other limitations that devices and controllers on the factory floor may
have. These resources are maintained by the cloud provider. The use of the cloud
reduces the expenses of the organization in many aspects.

Another advantage of the architecture is that avatars may communicate with
each other in the cloud to form online distributed decisions and adaptations.

Another notable technology is the digital twin [13]. The digital twin is a
digital representation of a device, system, or process. It allows organizations to
analyze the system, run simulations, and get predictions about the system. The
digital twin is inherently different than our avatar PLC, as we do not replicate
the entire ICS network or PLC, we move some of the PLC logic to the cloud
to achieve better performance and other useful features. We keep the real-time
restricted operations done on the production floor and let the cloud assist with
system tuning/programming to achieve better performance, security, and more.

2 Avatar PLC

In our new architecture, the local PLCs in the plant are accompanied by avatar
PLCs that run in the cloud. Fig. 2 illustrates the model. The avatar PLC is an
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avatar process [3,6] that communicates with the local PLC.
As can be seen in Fig. 3, a new layer is added to the traditional model, the

Cloud Layer. This layer crosses all the layers up to the field layer and may affect
each of them. The Cloud Layer contains the following entities:

– The avatar processes for the ICS devices. In this paper, we focus on avatars
for the PLCs.

– An application of an engineering station or a SCADA HMI may be added to
the cloud if access is needed at any time from anywhere on Earth. Alterna-
tively, it is also possible to program the PLCs and their avatar solely from
the plant.

– Additionally, the historian is moved to the cloud to store historical ICS data
in a massive amount.

We split the programmable logic of the PLC into two parts. One part consists
of critical code snippets that must be executed in real-time, and the other part
consists of code snippets that are not critical.

In many cases, it is crucial that parts of the programmable logic run locally at
the PLC. These snippets cannot tolerate network latency. Therefore, we manage
to provide offloading of PLC tasks to the cloud.

An example of such logic is predictive maintenance, which typically uses ma-
chine learning techniques. Suppose that the PLC should analyze the data history,
and at runtime, it needs to use the output of a machine learning algorithm. The
part of the program that implements the machine learning algorithm can run
as an avatar process and transmit the output to the PLC, there is no need for
this code to run locally at the PLC. An example of the use of machine learning
in autonomous cars is the implementation of the vision and object identification
component appear in, e.g., [2].

A major advantage of the avatar PLC is that it can perform heavy computa-
tions, which are not necessarily possible on the PLC. Examples include machine
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learning algorithms, simulations, and intrusion detection. PLCs typically do not
have the ability to perform complicated calculations. To make matters worse, low
replacement and update frequency characterize existing ICS deployments. PLCs
have a lifetime that can reach decades (unlike devices in standard IT networks).
As a result, there are many legacy PLCs with limited computation power.

Another advantage of avatar PLC is the cost reduction. Many places offer a
discounted rate for electricity in certain time frames. The avatar PLC can plan
when the production costs the least and operate the system at that time.

Our avatar actually contains a certain percentage of the PLC code. Notice
that in the case of 100% of the code, the PLC is basically a relay for the field
devices and it is unnecessary. We introduce a new model of PLC as a Service [8]
which is realized through the avatars. It is important to note that in this case, we
compromise the real-time requirement since all operations come from the cloud.

In this architecture, the engineering stations and SCADA HMIs are accessible
from the cloud as well. The PLCs communicate directly with the field devices
using the same protocols as before.

Notice that communication with the cloud depends on the ISP, but the in-
dustrial process must not be affected by failures such as loss of communication.
For this purpose, the engineer can implement an emergency program that runs
in case of a communication failure with the cloud.

2.1 The Role of the Engineering Station

The engineering station allows the user, or the engineer, to implement a control
logic program, load it to the PLC, and send a variety of other commands to the
PLC. Since parts of the control program run on the cloud in our new system,
the role of the engineering station must be adapted and extended accordingly.

The engineering station has a special task during the installation of the
avatar, securely coupling the PLC/device to its avatar. Later, the avatar and
its coupled PLC/device communicate directly (using an encrypted channel with
private key(s) unrevealed to the engineering station). Thus, following installa-
tion, the engineering station communicates only with the avatar, which in turn
allows the usage of commands and reports in a high level of abstraction.

Suppose that the engineer implements a control logic program for the PLC
and the avatar. The engineering station prepares the running environment for
the program as follows:

– Creates a new avatar process if one does not already exist.
– Gives the identification and security information of the PLC to the avatar.
– Loads the program to the avatar.
– Gives the identification and security information of the avatar to the PLC.
– Loads the program to the PLC.

The PLC can then start running the loaded program and communicating
with its avatar process.

Communication with the cloud, however, holds various security risks. In the
following section, we address these risks and provide a holistic security solution
for our new system.
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3 Security Architecture

ICS systems are an attractive target for cyber attacks due to their importance
and criticality. Over the years, many attacks against ICS systems were publicly
disclosed by the media [7,4,1]. In this section, we describe a security architecture
for our new system that allows the devices in the plant to securely communicate
with their matching avatars in the cloud.

A major difference in our new architecture, compared to the traditional ar-
chitecture, is the inbound traffic to the industrial network. In the traditional
architecture, data is only sent out of the network. In this new architecture, mes-
sages and commands are coming from outside the industrial network directly to
the PLCs, similar to other closed-loop systems [10]. This opens a window for
attacks that were not possible before; the threat model is drastically changed.

This change allows for possibly-malicious traffic to impact the industrial net-
works which are inherently insecure. The Modbus/TCP protocol [12], for exam-
ple, does not provide integrity or confidentiality for the messages. As a result,
an attacker can eavesdrop and manipulate sensitive traffic.

Our goal is to limit the broad attack surface created by the transition of the
control logic to the cloud.

The communication between the PLC and the avatar is done over a secure
channel, like TLS [11] or IPSec [9]. I.e., there is an authenticated and encrypted
tunnel between the PLC and the avatar. The tunnel allows the avatar to securely
send commands and control the PLC. For this purpose, we use the engineering
station to provide the PLC and its avatar with security information. We design
a new protocol at the end of which both parties can establish a secure channel
using cryptographic keys.

When the engineering station creates the avatar, it sends a pair of public key
and private key both to the PLC and the avatar. The engineering station also
sends the identifying details of the PLC and its public key to the avatar and vice
versa. This process is illustrated in Fig. 4.

Using the public keys, the PLC and its avatar form a secure channel to com-
municate securely. When a PLC wants to communicate with its avatar, they use
a challenge-response protocol to authenticate their identities. Each entity vali-
dates the identity of the other with the public key. If the validation is successful,
the entity knows that the other party is the real avatar and not an impostor.
Then, they use the public keys to agree on a shared symmetric key. This key is
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a short-term key that is used for a limited period. If the PLC and the avatar
have already agreed on a key in the near past, they continue using it without
generating a new key.

A public key can be revoked, e.g., if the private key of the entity is com-
promised. In such a case, the programmer uses the engineering station to load
another public key to the PLC and the avatar.

A benefit of this architecture is that the avatar PLC can run security tools
that do not exist today on standard PLCs, such as sophisticated firewalls and
anti-virus systems. Nowadays, many attacks against ICS systems use takeovers
on the PLCs that do not run such tools. We migrate these security tools to the
avatar, and therefore such tools dramatically enhance the security of the whole
system.

4 Key Distribution Protocol

The following are details about our new key distribution protocol: a crypto-
graphic protocol between the avatar, its PLC, and the initialization station
(which is implemented as part of the engineering station). The protocol is out-
lined in Fig. 5. The initialization station, as its name suggests, initiates the
protocol and bootstraps the cryptographic keys of the parties.
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We assume that both the PLC and the avatar have initial keys installed.
These keys are stored outside the framework of the system, e.g., by the PLC
vendor.

Configuration. The protocol starts when the initialization station sends a
new configuration for the avatar and the PLC, such as a new logic.

Bootstrapping. The initialization station generates a new symmetric key,
InitKey, and sends it to the avatar and the PLC. The new key is encrypted
together with a random nonce, which is used as a challenge, under the receiver’s
key. The receiver decrypts InitKey and its nonce from the message. Then, it
encrypts the nonce under InitKey and sends it to the initialization station. The
last job of the initialization station is to make sure that the nonce is properly
returned.

Creating a new key. The avatar randomly generates an ephemeral public
key pair. It uses InitKey to encrypt the public key with its ID and sends the
result to the PLC. The PLC decrypts the received ciphertext and validates the
ID of the avatar. It then creates a symmetric session key, SessionKey, and uses
the public key to encrypt it with its ID using quantum-safe encryption. Upon
receipt, the avatar decrypts the ciphertext with the private key and validates
the ID of the PLC. Moreover, the ephemeral public key pair is removed from
the memory of the avatar.

Operation. After the message exchange is completed, the avatar and the
PLC share a symmetric key that is used to secure the session. The parties use
this session key to form a secure channel, over which they can send messages
securely. Messages are protected using encryption and authentication.

Our security architecture provides various security features:

– Authentication Each party knows how to verify the other party’s identity.
To communicate, each party needs to decrypt InitKey, which is encrypted
with its secret key. The parties receive it in a message from the initialization
station, and they only have to decrypt the message to obtain the key. In the
next message exchange between the parties, they both use InitKey, so they
identify a rogue machine if it exists.

– Integrity and confidentiality Secure the transmitted data from malicious
modification and reading (respectively) by an attacker by the secure channel
that encrypts and authenticates the data.

– Forward secrecy The protocol provides forward secrecy because if either
of the long-term keys is exposed, AvatarKey or PLCKey, it will lead to
exposure of InitKey, because the attacker can decrypt it from the traffic.
Still, the attacker will not be able to decrypt the avatar–PLC data. The
ephemeral key, PubKeyPLC , protects against such an attack because the
private key remains secret, even if long-term keys are compromised, as it is
not sent over the channel. Therefore, the session key also remains secret and
the traffic is protected.

– Backward secrecy In the opposite direction, the protocol provides back-
ward secrecy because the parties replace the session key every once in a
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while. Therefore, even if long-term keys are compromised, an attacker still
fails to decrypt future traffic.

– Post-quantum safety The protocol is post-quantum safe because we use
post-quantum cryptography. Examples of such primitives are AES-256 for
symmetric encryption and lattice-based cryptography for asymmetric en-
cryption.

5 Implementation Concepts for the Avatar PLC/SCADA

Several implementation aspects that their details are omitted from this extended
abstract.

– Real-Time-Oriented Programming Extensions to common program-
ming languages and compilers that allow the programmer to mark parts
of the code as real-time code. We provide an interface for the programmer,
to tell the PLC and the avatar which parts should run locally on the PLC
since they are critical, and which parts may take longer to execute and should
be offloaded to the cloud.

– Real-Time-Oriented Compiler A compiler that automatically turns a
generic program into a real-time-oriented program. The compiler decides
which parts run locally and which parts run on the cloud based on program
analysis.

– Adaptive Real-Time Partition A program that automatically splits a
program into a real-time-oriented program. The PLC and the avatar learn
which parts must run with real-time restrictions and should be executed
locally and which parts would take longer.

– Blockchain Investigate the use of blockchain, a decentralized system, in
the environment of ICS systems. Using smart contracts in blockchain to act
as distributively implemented avatars. Blockchain provides various security
features that allow to securely store information on a ledger.

– Machine Learning Models Use machine learning algorithms on the data
the avatars collect from the sensors. Constantly learning and tuning opera-
tions according to the collected data from the controlled production floor,
from the PLCs, sensors, activators, cameras, and alike.

– Distributed Computations Our architecture allows the PLCs to work
together and perform computations in a way that is not possible before, via
their avatars.
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Abstract. Known Visual Encryption Scheme (VES) schemes encode
the secret image pixels into subpixel maps of size m ×m, where m is a
parameter of the scheme. The pixel encoding is usually based on pixel
visual property, for example - transparency. The resulting pixel maps
contain black and white pixels and look like random collection of black
and white pixels, such that it is impossible to reconstruct the original
pixel. To reconstruct the original secret image, more than T shares should
be stacked. The reconstructed image will look grey with darker or whiter
pixels. It happens because the stacked subpixel maps represent a different
(implementing or logical operation) levels of grey - from very black to
some level of grey. In this work we introduce an optical VES solution that
leverages a physical model of waves interference. The image reconstructed
with the proposed VES consists of pure white and black pixels, while
preserving traditional VES computational efficiency. The proposed VES
is perfect information theoretical secure.

Keywords: Visual Secret Sharing · Visual Encryption Scheme · Image
Encryption · Information-Theoretic Secure Solution

1 Introduction

All known VES schemes encode the secret image pixels into subpixel maps of
size m×m, where m is a parameter of the scheme. The pixel encoding is usually
based on some pixel visual property, for example - transparency, as in [2] or
light intensity, as in [1]. The resulting pixel maps contain black and white pixels,
as shown in Figure 1. To reconstruct the original secret image, the shares are
stacked. If we put source of light under the stacked shares (created from pixel
transparencies), the reconstructed image will look grey with darker or whiter
pixels, namely, there will not be a totally white pixel. It happens because the
stacked subpixel maps represent different levels of grey - from very black to
some level of grey. More precisely, stacked subpixel maps representing black
pixels will have more than T black subpixels in the same positions of m × m
maps, and stacked subpixel maps representing white pixels will have less than
T black subpixels in the same positions of m × m maps, as shown in Figure:
1. Some of the existing VES schemes, including the Naor and Shamir original
scheme, can be extended to deal with the concealing of the secret image. There
are various methods to generate shares from the secret image, but all known
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methods generate grey scale shares that do not effectively hide the fact that
there is secret communication. For example, using Naor and Shamir proposed
extension, we can use innocent images of dog and cat to hide image of house.
For that, we create two shares - D that represents the dog and C that represents
the cat. When D and C are stacked, they reveal H - secret image of house. The
problem here is that all images participating in calculation, are grey images. It
includes shares D and C, and the reconstructed image H.

2 Related Work

2.1 Visual Encryption Schemes (VES) Background

Various Visual Encryption Schemes (VES) are proposed by researchers.
Naor and Shamir in [2] proposed a VES based on a pixel transparency sharing.
They define k out of n scheme that works as follows. The secret image is encoded
into n slides. At least k slides are required to recover the original image. The
image slide (or share) consists of the pixel subpixels (shares) that are populated
as following. Secret image T consists of black and white pixels. Every image pixel
is treated and encoded separately. There are two collections of n ×m matrices
C0 and C1. To encode a white pixel, a matrix from C0 is randomly drawn. To
encode a black pixel, a matrix from C1 is randomly drawn. Every row from the
chosen matrix is the pixel share. It defines the color of m pixels in each one
of the n shares. Generally, it can be described as Boolean matrix S = [sij ],
where sij = 1 iff the jth subpixel in the ith slide is black. When the slides are
stacked together, we see a combined share whose black subpixels are represented
by Boolean ”or” of rows Si1, i2, . . . ir in S.

Example: k = 2. Let C0 and C1 be two sets of all matrices obtained by
permuting the columns of matrices as described below:

C0 =


Matrices obtained by permuting of the columns of

1 0 . . . 0
1 0 . . . 0
. . .
1 0 . . . 0




C1 =


Matrices obtained by permuting of the columns of

1 0 . . . 0
0 1 . . . 0
. . .
0 0 . . . 1




Any single share in either C0 or C1 is a random collection of one black and n−1
white pixels. Any two shares of a white pixel have a combined Hamming weight
of 1. Any two shares of a black pixel have a combined Hamming weight of 2.
To avoid a distortion of the aspect ratio of the secret image, it is convenient to
represent the shares as two dimensional arrays d× d.
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An example of VES scheme pixel share options is shown in Figure 1, that fits
2 out of 2 VES scheme. This scheme does not keep a visual aspect ratio of the
VES shares (avoiding images distortion), like authors are doing in original VES
paper [2], but still is a valid VES example. Every target image pixel is randomly
given a value from the left or the right table. For the white pixel, the same share
is chosen. For the black pixel, a mirror share is chosen.

Fig. 1 Pixel Share Options

2.2 VES Perfect Color Use Limitation

In the VES scheme as described above, the visual effect of a black subpixel can
not be undone by the color of the same subpixel in other shares, which are laid
on it. Naor and Shamir call this property monotonicity. Security wise, it means
that if one of the VES shares is perfectly black (or perfectly white), the stacked
result is known in advance - if one of the shares is black, the stacked result is
black; if one of the shares is white - the stacked result is equal to the second
share value. This limitation example is shown in Figure 2 for 2 out of 2 VES. The
solution for the monotonicity used by the existing VESs is to represent every
subpixel in the share as a subpixel maps of size m × m. The stacked black or
white subpixels maps visually result in different grey level pixels. VES introduce
threshold d to distinguish black and white colors.

3 Our Solution

3.1 Waves Interference for Perfect Output Visual Encryption
Scheme

Our optical solution is based on waves interference and achieves Visual Encryp-
tion Scheme for perfect black and white images 1.

1 One may consider RGB images by handling, the matrix corresponding to R, with
values 0 when the pixel has no red component and 1 otherwise. Similarly, to green
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Fig. 2 VES Security Problem

We propose to use an existing physical model of waves interference to extend
the VES computational model. The waves interference is a physical phenomenon
in which, when waves meet in the space and time at the same point, their
interaction creates an aggregated wave that can be of the same, greater or lower
altitude. Constructive interference means that resulting wave has higher altitude,
and destructive interference means that resulting wave has lower altitude. To
maintain consistent and permanent waves interference, we have to ensure that
the interacting waves have the same length.

We represent each VES share as wave signal. We introduce two additional
parameters - phase and amplitude to control the waves. These additional pa-
rameters allow us to control the waves interaction, so it can result in either
constructive or destructive signal. With the constructive signal we implement
VES shares addition operator. The destructive signal allows us to implement
VES shares subtraction operator. In the VES scheme based on addition and
subtraction operators, we can achieve pixels of perfect white and black colors in
both the secret image shares and the reconstructed image.

In Waves Interference VES, each pixel in the secret image is represented as a
light beam (wave). The black pixel wave has an amplitude 1 and the white pixel
has an amplitude 0. The original pixel is encoded into n shares. Each share is a
light beam (wave) with amplitude Ai. Reconstructing the secret image from n
shares is calculated according to the principle of superposition - A =

∑n
1 Ai. We

are going to show that using waves constructive and destructive interference, Ai

can be assigned in the way that the above calculation results in 1 or 0 values.

and blue components of the pixel, thus matching three binary matrices instead of
one. More sophisticated schemes for fine tuned colors can be supported by adding
more matrices.
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Fig. 3 VES Optical Model

(a) Constructive - Yellow
Pixel

(b) Constructive - Blue
Pixel

(c) Destructive

Fig. 4 Waves Interference Types

Lets look at the 2 out of 2 VES scheme. The possible pixel values and their
superposition are shown in Figure 5. We denote the different amplitude waves
with yellow and blue colors. The resulting superposition wave amplitude can
be either yellow or blue when the shares’ colors are the same; or green when
the shares’ colors are different. The green color represents constructive waves
interference, while the yellow and blue colors represent destructive waves inter-
ference. The waves interference types are shown in Figure 4 - constructive for
yellow pixel share, constructive for blue pixel share, and destructive for different
pixel colors. The waves superposition represents Boolean NOT XOR operator,
as shown in Figure 5 It should be noted that we use colorful pixel to describe
the logical waves interference model. We can not use real optical wave colors
since the interfering waves should have the same wave lengths for stable waves
interference. The complete Optical VES Model is shown in Figure 3. First, we
convert the original black and white secret image to two shares of randomly
selected blue or yellow pixels as following - first share is randomly drawn from
the first column in the table in Figure 5. If the original pixel is black, the sec-
ond share pixel value is taken from lines 2 (if the first share was blue) or line
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3 (if the first share was yellow). If the original pixel is white, the second share
pixel value is taken from lines 1 or 4 - resulting in the same color for the both
shares - either blue or yellow. The result is two shares of uniformly distributed,
randomly selected blue or yellow pixels. An adversary that has access to one of
the shares, has not enough information to recover the original pixel, thus the
proposed VES is perfect information theoretical secure. To recover the original
image, the shares are stacked. It results in the three colors pixel image - blue or
yellow for the white pixels, and green for the black. The original image can be
perfectly recovered by simple pixels mapping - the blue and the yellow pixels
are mapped to the white pixels, and the green pixels are mapped to the black
pixels, as shown in Figure 5.

Fig. 5 Waves Interference Pixel Matrix
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Abstract

The use of low Earth orbit satellites (LEO) for communication has become a reality (e.g.,
SpaceX). The usage of Internet communication communicating videos is very significant. We pro-
pose a scheme based on Scalable Video Coding (SVC) that fits multicat to users with heterogenous
resolution demands (e.g., mobile phones, computer screens, and HD televisions). We build a hier-
archy of optimal Steiner trees that are used to communicate layers of the SVC. The first Steiner
tree spans all the terminals and is used to convey the first layer of the SVC, and the second spans
the terminals that require more resolution than the basic resolution. The third Steiner tree spans
the terminals that require even more resolution, and so forth for the following Steiner trees and
SVC layers.

We suggest a new algorithm for finding the Steiner trees in the hierarchy, such that they are
all optimal and prefer edges not used by the Steiner trees that are used for previous layers. Thus,
distributing the communication without sacrificing optimality.

1 Introduction

Broadband satellite multimedia (BSM) systems will be an integral part of the global information in-
frastructure as one of the major technologies providing both broadband access and broadcast services
[ST02]. Recent commercial deployments show that users not only would like to have access to value-
added services (e.g., mobile Internet, multimedia streaming, etc.) but are also willing to pay more for
them and, in particular for video services (Sattler). The introduction of video coding technology in the
satellite application space opens up new and challenging topics; digital video applications have to face
potentially harsher transmission environments than the ones they were originally designed to work with
(e.g., HDTV, Mobile TV), especially as regards traversing packet networks with the presence of satel-
lite links. Towards approaching the satellite multimedia application delivery needs, H.264/MPEG4
Advanced Video Coding (AVC) [OW04] as the latest entry of international video coding standards has
demonstrated significantly improved coding efficiency, substantially enhanced error robustness, and
increased flexibility.

Video Transmission. Media and its transmission have undergone significant transformation in
recent years. Just a few decades ago, it was unimaginable that people could launch their own media
and broadcast it to a wide audience. However, with that media transition comes a revolution in
screen qualities (full hd, hd, etc..), and since users are highly diverse, it is hard to meet all of their
requirements. One of the main strategies to fulfill users’ demands is simulcast, where videos are sent
in different resolutions (1080p, 720p, 360p). After receiving the three streams, the SFU selects one
based on the terminal performance and forwards the streams to the terminal.

∗Research supported by SATELLITE BGU-GILAT magneton grant, contact author: Adnan Jaber,
adnanjaber89@gmail.com.
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Another strategy out there is SVC (Scalable Video Coding). SVC deals with the problem in video
multicast caused by user heterogeneity and attracted more and more attention in recent years. Specifi-
cally, SVC encodes a video stream into one base layer and multiple enhancement layers. The base layer
carries the essential information and provides a minimum quality of the video, and the enhancement
layers represent the same video with gradually increasing quality. The decoding of a higher enhance-
ment layer is based on the base layer and all its lower enhancement layers [KPH15]. By multicasting
an SVC-based video, users with higher channel quality can decode more layers to retrieve a video with
higher quality, and users with worse channel quality can decode fewer layers to retrieve a video with
a lower quality.

Scalable Video Coding. In general, a video bit stream is called scalable when parts of the stream
can be removed in a way that the resulting substream forms another valid bit stream for some target
decoder, and the sub-stream represents the source content with a reconstruction quality that is less than
that of the complete original bitstream but is high when considering the lower quantity of remaining
data. Bitstreams that do not provide this property are referred to as single-layer bit streams. The
usual modes of scalability are temporal, spatial, and quality scalability.

Spatial scalability and temporal scalability describe cases in which subsets of the bit stream rep-
resent the source content with a reduced picture size (spatial resolution) or frame rate (temporal
resolution), respectively. With quality scalability, the substream provides the same spatiotemporal
resolution as the a complete bit stream, but with a lower fidelity – where fidelity is often informally
referred to as signal-to-noise ratio (SNR). Quality scalability is also commonly referred to as fidelity
or SNR scalability. The different types of scalability can also be combined so that a multitude of rep-
resentations with different spatiotemporal resolutions and bit rates can be supported within a single
scalable bit stream.

Efficient, scalable video coding provides several benefits in terms of applications a few of which
will be briefly discussed in the following. Consider, for instance, the scenario of a video transmission
service with heterogeneous clients, where multiple bit streams of the same source content differing in
coded picture size, frame rate, and bit rate should be provided simultaneously. With the application
of a properly configured scalable video coding scheme, the source content has to be encoded only
once – for the highest required resolution and bit rate, resulting in a scalable bit stream from which
representations with lower resolution and/or quality can be obtained by discarding selected data. For
instance, a client with restricted resources (display resolution, processing power, or battery power)
needs to decode only a part of the delivered bit stream. Similarly, in a multicast scenario, terminals
with different capabilities can be served by a single scalable bit stream. Another benefit of scalable
video coding is that a scalable bitstream usually contains parts with different importance in terms of
decoded video quality. This property, in conjunction with unequal error protection, is especially useful
in any transmission scenario with unpredictable throughput variations and/or relatively high packet
loss rates. By using stronger protection of the more critical information, error resilience with graceful
degradation can be achieved up to a certain degree of transmission errors.

Media-aware network elements (MANEs), which receives feedback messages about the terminal
capabilities and/or channel conditions can remove the nonrequired parts from a scalable bit stream
before forwarding it. Thus, the loss of essential transmission units due to congestion can be avoided, and
the overall error robustness of the video transmission service can be substantially improved. Scalable
video coding is also highly desirable for surveillance applications, in which video sources not only
need to be viewed on multiple devices ranging from high-definition monitors to videophones or PDAs,
but also need to be stored and archived. With scalable video coding, for instance, high-resolution/
high-quality parts of a bit stream can ordinarily be deleted after some expiration time so that only
low-quality copies of the video are kept for long-term archival. The latter approach may also become
an interesting feature of personal video recorders and home networking.

Even though scalable video coding schemes offer a variety of valuable functionalities, the scalable
profiles of existing standards have rarely been used in the past, mainly because spatial and quality
scalability has historically come at the price of increased decoder complexity and significantly decreased
coding efficiency. In contrast to that, temporal scalability is often supported, e.g., in H.264/AVC-based
applications, but mainly because it comes along with a substantial coding efficiency improvement.
H.264/AVC is the most recent international video coding standard. It provides significantly improved
coding efficiency in comparison to all standards.
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2 Scalable Video Coding Formats

H.264/SVC. Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video
compression standard based on block-oriented, motion-compensated coding. It is by far the most com-
monly used format for recording, compressing, and distributing video content, used by 91% of video
industry developers as of September 2019. It supports resolutions up to and including 8K UHD. The
intent of the H.264/AVC project was to create a standard capable of providing good video quality at
substantially lower bit rates than previous standards (i.e., half or less the bit rate of MPEG-2, H.263,
or MPEG-4 Part 2), without increasing the complexity of design so much that it would be impractical
or costly to implement.

H.265/HEVC.HEVC was designed to substantially improve coding efficiency compared with H.264/MPEG-
4 AVC HP, i.e., to reduce bitrate requirements by half with comparable image quality at the expense
of increased computational complexity. HEVC was designed with the goal of allowing video content
to have a data compression ratio of up to 1000:1. Depending on the application requirements, HEVC
encoders can trade off computational complexity, compression rate, robustness to errors, and encoding
delay time. Two of the key features where HEVC was improved compared with H.264/MPEG-4 AVC
are the support for higher resolution video and improved parallel processing method.

AV1-VP9. AV1 is a traditional block-based frequency transform format featuring new techniques.
Based on Google’s VP9, AV1 incorporates additional techniques that give encoders more coding

options to enable better adaptation to different input types.

Figure 1: SVC Formats

3 Experiment with Scalable Video Coding

In the next experiment, we consider simple spatial scalable coding with three spatial resolutions (720p,
360p, 144p). Thus, the base layer (layer 0) represents a 144p sequence with a frame rate of 25 Hz.
In the first and second enhancement layers, a 360p and 720p sequence with a frame rate of 25 Hz is
coded. The hierarchical coding structure with two spatial layers is illustrated in Figure 2.
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Figure 2: structure of two spatial layers

In the first step, the resampling tool is used for generating spatially and temporally downsampled
sequences; at this next step, a configuration file that contains information about each layer and a main
configuration file that contain details about the hierarchy and the strategy are given to the Encoder
as input. In the end, the corresponding encoder output is shown, which summarizes the supported
spatiotemporal resolutions and bit rates.

Figure 3: Spatiotemporal Layers stack

Note that each layer depends on and contains all of the previous layers, so as a next step, Demul-
tiplexer for SVC-DASH is used to Splits the SVC bitstream into chunks, one per layer [GTH+13]. At
this step’s end, each layer can be sent independently to the next end. at the client Re-Multiplexer for
SVC-DASH. Reorders SVC layer chunks into a single SVC bitstream.

The next table shows the bandwidth of the original file and each of the spatial layers.

file size frame rate

original 2.13MB 25
layer 0 140KB 25
layer 1 738KB 25
layer 2 2933KB 25
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Figure 4: Btstream-Reorder

4 Hierarchical Optimal Steiner Trees, Avoiding Tree Edges
Overlaps

The Steiner tree problem is one of the best-studied problems in Computer Science [RK23]. Given a
connected graph G = (V,E) on n = |V | nodes, edge weights w : E− −→ R+, in fact, we restrict the
weights here to be positive integers, and a set S ⊆ V of k terminals, the objective is finding a subtree
ST of G spanning S such that the weight w(ST ) :=

∑
e∈ST w(e) of ST is minimized. In the cardinality

version of the problem, all edge weights are one.
Steiner tree problem involves finding the minimum-cost tree that connects a given set of points in

a graph. In this problem, we have a set of “terminal” points that we must connect, and we can also
introduce additional “Steiner” points to minimize the total length or cost of the tree.

The objective of the Steiner tree problem is to find the optimal set of edges that connect all the
terminal points while minimizing the total length or cost. The tree can be constructed by adding extra
Steiner points to the graph, allowing for more flexibility in connecting the terminals.

The Steiner tree problem has numerous applications, such as in network design, VLSI circuit
routing, wireless sensor networks, and geographic information systems. By finding the minimum-cost
tree that connects a given set of points, the Steiner tree problem helps optimize various real-world
systems where efficient connections are essential.

Finding an exact algorithm for the Steiner tree problem is a daunting task because it falls under
the category of NP-hard problems, implying that it is computationally challenging to solve for large
instances in a reasonable amount of time. Despite this difficulty, there are two popular exact algorithms
for the Steiner tree problem, Integer Linear Programming (ILP) and Branch and Bound.

The branch and bound algorithm explores the solution space by systematically branching on edges
or potential Steiner points, creating subproblems. It evaluates the feasibility and cost of each sub-
problem, considering connectivity requirements and calculating the total length of the tree. Through
pruning techniques, it discards subproblems that are deemed inferior based on their evaluated cost,
avoiding unnecessary computations. The algorithm continues branching and evaluating subproblems,
iteratively narrowing down the search space until an optimal solution is found.

ILP formulates the Steiner tree problem as an optimization problem using binary variables to
represent the presence or absence of edges in the tree. The objective function aims to minimize
the total length or cost of the Steiner tree, subject to constraints that ensure connectivity and the
inclusion of necessary Steiner points. ILP solvers, such as CPLEX or Gurobi, can be utilized to solve
the formulated problem by employing advanced optimization techniques. ILP provides a rigorous and
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exact approach to finding the optimal Steiner tree solution, but its computational complexity increases
significantly with larger problem instances.

reduction techniques are the most important ingredient in a state-of-the-art SPG solver. Using
linear programming and branch-and-bound SCIP-JACK [RK23] implement the branch-and-cut ap-
proach. Branch-and-cut combines the strengths of branch and bound for exploring the solution space
and linear programming relaxation for obtaining lower bounds and cutting planes.

building on that, we suggest a new algorithm for finding the Steiner trees in the hierarchy, such
that they are all optimal and prefer edges not used by the Steiner trees that are used for previous
layers.

Algorithm 1 Herarchical Steiner Tree (HST) Algorithm (finding ST1, ST2, ST3)

Require: S3 ⊆ S2 ⊆ S1 Sets of Terminals, in fact, we can continue with more subsets
Ensure: find optimal Steiner tree ST1 where G = (V,E) and S1 ⊆ V is a finite set of terminals.

for each (E ∈ G) do
W (E1)←W (E)× |V |

end for
for each (E ∈ ST1) do
W (E1)←W (E) + 1

end for
Ensure: find optimal Steiner tree ST2 where G = (V,E1) and S2 ⊆ S1

for each (E ∈ ST2) do
if E ∈ ST2 AND E /∈ ST1 then
W (E2)←W (E) + 1

end if
end for

Ensure: find optimal Steiner tree ST3 where G = (V,E2) and S3 ⊆ S2

return (ST1, ST2, ST3)

To deal with STi where i is greater than 3, we repeat the actions made to the previous ones making
sure that all edges used in previous ST s are with a weight that is 1 more than the |V | times their
original weight in E. Then we apply the optimal Steiner tree finder.

In this way, the optimal Steiner tree finder finds in each iteration i an optimal Steiner tree for
Si over G as it prefers an optimal Steiner tree that chooses already used edges that may have the
weight of |V | − 1 additional 1 greater than the optimal weight multiplied by (|V |) (optimal weight
multiplicated, OWM) over a non-optimal tree that has at least |V | more weight than OWM, as one
non-optimal edge implies the addition of at least |V | to the tree weight.

4.1 Implemntaion and results

We have implemented Hierarchical Stainer Tree (HST) algorithms that search for N hierarchial Steiner
trees in a weighted graph G. Giving a weighted graph G and a set of terminals S1, S2, S3...Sn where
Sn ⊆ Sn− 1.... ⊆ S2 ⊆ S1 HST finds efficiently N optimal Steiner trees and prefers edges that are not
used by the previous trees. We base our solution on the SCIP-Jack [GKM+17] solver.

HST was tested on different graph scales and various terminals number. It comes out that for a
50x50 mesh grid, we can find at least 4 hierarchical optimal Steiner trees in a good performance, only
in one second. worse case performance finding optimal Steiner tree in different mesh grid graph scales
shown in Figure 5, HST has better performance on small-scale graphs.
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Figure 5: Prosscing time in seconds

Figure 6: Orginal Graph: 4x4 Mesh-Grid

Given a 4×4 weighted graph and a set of terminals marked in red Figure 6 and Figure 7 respectively
S1={1, 4, 5, 6, 11, 12, 14} and S2={1, 5, 11, 14}. The output was two optimal Steiner trees Figure 8
is the first hierarchical Steiner tree weighted 9 and Figure 10 is the second weighted 5.
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Figure 7: Graph weights after applying algorithm

In the first step of the algorithm, we search for the first optimal Steiner tree giving original graph
weights and terminals set S1. while in the next step, we change the original graph weight Figure 7
to avoid using the same edges of the first tree. the weights of the graph changed as follows each edge
in the graph multiplied by the nodes number of the graph, in our case 16. and each edge used in the
previous tree increased by one.
Applying HST on the graph resulted in having an optimal Steiner tree that used two odd edges,
highlighted in green 9. while all the edges of the optimal tree without applying HST 10 have been
used by the previous tree 8. We note that we can search for several optimal Steiner trees in the first
layer, if there are two such optima Steiner trees then we can use E1 and the same terminal, to check
whether another optimal tree exists, then we can continue with each of them to further explore next
layers. We defer more exposition of this approach to the full version.

Figure 8: first hierarchical Steiner Tree
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Figure 9: The second hierarchical Steiner Tree using HST

Figure 10: The second hierarchical Steiner Tree

References

[GKM+17] Gerald Gamrath, Thorsten Koch, Stephen J. Maher, Daniel Rehfeldt, and Yuji Shinano.
Scip-jack - a solver for STP and variants with parallelization extensions. Math. Program.
Comput., 9(2):231–296, 2017.

[GTH+13] Michael Grafl, Christian Timmerer, Hermann Hellwagner, Wael Chérif, and Adlen Ksen-
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Entrepreneurship Pitch Track chaired 

by: Yonah Alexandre Bronstein 



expose researchers to the world of entrepreneurs and vice versa, for the sake of creating mutual value 

and advancing the economy and society. Seven startups pitched this year focusing mainly on Threat 

Protection, although the scope of the threats was quite broad: Cyber threats in software and in the web, 

Physical Infrastructure threats, Biological threats (hacked DNA is no longer science-fiction), and Human 

threats in Health Care or Elder Care! It was heartening, this year as well as in past years, to note that, 

even in a business focused track, there were entries that could justifiably be considered “for the greater 

good of the people” – that is, even if they had business motives and priorities, they would still end up 

benefiting all of us, such as Smart Traffic management and Efficient Polymers in building 

construction… All these entrepreneurs deserve all the encouragement that we in the community can give 

them, in whatever form is suitable. As was the case last year, the Entrepreneurship Pitch track at 

CSCML 2023 did an excellent job of fulfilling this objective and consequently was a great success. It 

received endorsement from leading VCs and corporations (IBM, Microsoft, Checkpoint…). 

Out of the seven start-ups pitched during CSCML 2023, three were selected as finalists: “Xplorisk - 

Automated Web3 Risk Management” led by Shiran Kleiderman and Snir Levi, was selected by the 

Entrepreneurship Pitch Track Committee and the audience as the leading entry and won the $500 prize. 

“Amaze,” presented by Hannah Yair – which some pitch-in help from Prof. Dolev - which aims to 

improve traffic efficiency at intersections, received second place. Tied for second place was 

“AntisepTech,” led by Barak Katz, who implemented a nice pivot from the Corona focused pitch in the 

recent past, to a much older and pervasive issue unfortunately, of human abuse in health care or elder 

care… 

Overall, the quality and value of the start-ups who presented was quite impressive. And I look forward 

to future CSCML conferences in the years to come, still on Zoom as IMHO, it makes it so much easier 

and cheaper for people around the world to present (and attend ☺). 

Best regards, 

Yonah Alexandre Bronstein 

Entrepreneurship Pitch Track Chair 

Entrepreneurship Pitch Track chaired by: Yonah Alexandre Bronstein 

The Hi-Tech industry and state-of-the-art research are getting ever closer, as shown by the overlap 

between the PhD track and Entrepreneurship track this year. The goal of the CSCML Pitch Track is to 



DETEXT Team
Security Layer for privacy and confidentiality

Co-Founder / CEO

Yuri Shterenberg
B.sc in Software Engineering
DevOps Architect/Team lead/

CyberSecurity specialist  in 
Cybersecurity company

Idan Proshtisky
B.A in Information System Management

Project Manager/Service Team lead

Co-Founder / CTO Head of Research

Dr. Nadav Voloch
CyberSecurity Researcher at IMT School 

of advanced studies, Lucca, Italy
Co-founder of BrainPM.com- AI project 

management
Cyber and Software lecturer at Ruppin 

Academic Center



The Problem
Sensitive business information is any data that would pose a risk to 

the company if exposed to unauthorized factors

Personal Information Sensitive Information Confidential Information
ID number
Name
Residential address
Email address
Any demographic details

Medical history
Political opinions
Genetic or biometric information
Personal equity
Communication data

Any kind of textual data  that can be 
classified as secret.
Documents and README files 
containing passwords, users, urls 
and access keys.



The Problem
Today, over half of the companies' digital textual information is exposed to 

unauthorized factors. This is due to the fact that there is no solution 
combining user access control and sensitive data detection.

Corporate internal 
information

Secrets in files Multiple CMS 
Systems

Email:david@company.com
Phone: (555) 555-1234
Card:1234-5678-1234-1234
Despite earning $12.5B in 
revenue

Absence of 
authentication

Anyone at  any time can 
access sensitive information 
if it is at his disposal 



Current available solutions

- Online training platform

- Legally binding contract between two or more parties (NDA)

- Whitelisting destination domains (data in transit)



The Solution

Identification and protection of sensitive parts of textual information

detext.io

Detection of potential 
weakness

Access ControlProtect sensitive data



The Product
Our platform provides businesses with an ultimate solution to protect sensitive 

textual data, by guaranteeing that only authorized users can access it.

https://app.diagrams.net/?page-id=2dve4DTN74gXU_fgri5I&scale=auto#G1efFfNQIzfbZgSwjW6nzJ1bTS-PnXEbNL


The Innovation
Our unique technique for parsing and extracting sensitive 

information from multi-format data structures.

Text-Engine

Email with (image) attachment 
and video file

Video-Engine Image-Engine Audio-Engine



The Innovation
Our unique algorithm allows for the secure sharing of information, 

with access to sensitive data determined by the recipient's pre-
defined parameters.

Sensitivity level of the data Recipient access level

Data Policy

allow deny

Trust assessment of users and 
they score



Our Achievements So Far
● We have done validation with 4 companies -link to the validation PP
● Designed Partner- recently we started to run our alpha product with design

partner(who took apart in our validation forum)- in this link we can see RTD
with all the encrypted data

● A part of the NVIDIA acceleration program
● Collaboration with Ruppin Academic Center

https://docs.google.com/presentation/u/0/d/16qhBRjPvPB2NUeM3Pz99nXNTPIaLjreh12YrB8LDqV0/edit
https://app.datadoghq.eu/dashboard/rwx-nwj-ywm/tpim-outlook---yuri?from_ts=1679946879429&to_ts=1680033279429&live=true


Automated & Ongoing
Web3 Risk Management

Private & Confidential

June 2023



Shiran Kleiderman, Co-Founder & CEO
▸ CSO & Head of IT, Celsius
▸ Founding Team Member &

CTO Dark Web Intelligence, BlueVoyant
▸ CTO Cyber Threat Intelligence, K2 Integrity (acq.)
▸ Co-Founder, Aegis Bitcoin Wallet
▸ IDF Commander, 8200 & Matzov

Snir Levi, Co-Founder & CTO
▸ Head of Security Data Science & R&D, Celsius
▸ CTO & Risk Manager, Financial Immunities
▸ CTO & Financial Consultant, Precise
▸ IDF Commander, Iron Dome Core Team

Team

Advisors: 
-Eran Reshef (Sanctum/IBM, Skybox/Providence Eq., Collactive/IAI),

-Uri Stav (DCG, Genesis, Crypto Expert),
-Dr. Udi Levi (Prime Minister’s Office, Banking Sector)

▸ Pioneering compliance and
security in the Web3 industry

▸ Proven track record in
successfully building security
departments, products, and
companies



Have a forward looking approach for
compliance & security

Establish 
mature risk 
mitigation 

frameworks

Improve 
client asset 

safeguarding 
controls

Control your 
Web3 

environment

For Web3 to be widely adopted, it’s essential to 



Your Web3 Environment and Dependencies

Do you know your assets as well
as the criminal groups

and hackers?



Client 
Mobile/Web 
Apps + APIs

Custodians
Additional 
Sources &

Counterparties

On & Off Ramp 
Services

Exchanges DeFi

Staking

OTC Lending

Mining

Chains, Bridges 
& “Hops”

Internal Deployment 
Wallets/
Network

External Asset 
Managers

Compliance & Security Officers
LACK CONTROL OF THEIR WEB3 ENVIRONMENT 

ValidatorsNodesDomains GitHub/CodeSocial Media



▸ The Web3 System of Record
With the Supporting Web 2.0 Components



Xplorisk Ledger & 
Ongoing Risk Assessment

A single view of your entire 
Web3 environment and user base
via our SaaS, API, and Workflow Automation

The Solution

WEB3 ON-CHAIN     > WEB3 OFF-CHAIN     > WEB 2.0 & FIAT 



Collaborative Vision & Platform
Real-time Data Collection

Coverage of 60+ blockchains and data about your assets, infrastructure, counterparties, 
and users from existing solutions and Xplorisk proprietary collectors

Xplorisk Ledger
Continuously updated fusion of Web3 and Web 2.0 information

<<<Utilize screening capabilities 

Compliance Gaps Financial Risk & 
Productivity

Fraud 

Automated & Ongoing Risk Assessment



Complete Asset Visibility & Control



Behavioral & Automated Risk Assessment



TradFi & CeFi DeFi

Banking Crypto Arms

Exchanges & CeFi

Hedge Funds

Custodians

Bridges

Platforms & Protocols

Staking & Mining

DAOs

Payment Platforms

Web 2.0 Companies with 
Web3 Interaction 

Regulators, Auditors, Government, and Law Enforcement

Target Audience

Stakeholders:
Chief Compliance Officers,
Risk Officers, and CISOs

Any entity dealing with Web3,
crypto, and digital assets

Not only DeFi



▸ Comply with current and future regulations

▸ Complete visibility and control of your Web3 
environment, 24-7, automated, and with full 
context

▸ Safeguard client assets

Value Proposition



Automated & Ongoing
Web3 Risk Management

Private & Confidential

Complete Asset Visibility and Control
Thank You.



Cyber-Biological Threats

Cyber@BGU, 

Software and Information Systems Engineering

Ben-Gurion University of the Negev

Rami Puzis - Cyber@BGU

1

Vision: Developing secure coding practices in biohacking 
and synthetic biology

Mission: BioSOC – security operations center for efficient 
and robust synthetic DNA order screening 

Contact: Rami Puzis  puzis@bgu.ac.il

mailto:puzis@bgu.ac.il


False-negatives

• Code Obfuscation

• DNA Obfuscation

Rami Puzis - Cyber@BGU

2Digital security and biosecurity have 
similar challenges

Changing the DNA such that 
it is difficult to recognize but 
it can be reconstructed into 
a functional form.   

Biologically proven!

Supply chain attacks!

The problem

Not detectedDetected

16994794 Toxins

20144479Half-toxin

5991502Toxins+camouflage

6364129Cre-Lox obfuscated 
toxins 



Four decades of digital cyber-security 
empower the biological cyber-security 

• Security Operation Center (SOC) with bioinformatics toolbox

• Detection and triaging of suspicious orders

Rami Puzis - Cyber@BGU

3

Web 
dashboard 

and services
OrchestratorDMZ

SIEM 
(Splunk)

Lox-based alert 
correlation

Lightweight toxin detectors

NNTOX InterPro GenoTHREAT …

SLURM 
High performance 
compute cluster

BLAST

SeqScreen

The solution



Gene Edit Distance

Quantify how easy is it to 

make something malicious 

out of an order rather than checking 

if it is already malicious. 

Rami Puzis - Cyber@BGU

4The secret  
souse



• Competition:
• DNA screening service providers:

• BATTELLE
• ACLID

• Cyber-biosecurity anti-crime
• bronic

• Academia:
• NNTox – toxicity prediction tool; relies on GO terms; easily circumvented
• SeqScreen – framework for sequence function prediction; easily circumvented
• InterProScan – … easily circumvented

• Potential clients
• Members of the IGSC consortium (span 80% of synthetic DNA market)

Rami Puzis - Cyber@BGU

5

ACLID

DNA order screening

cyber-biosecurity consulting

The 
market

https://aclid.bio/


Rami Puzis - Cyber@BGU

6

DNA screening 

complex engineered 
biological systems

biological protocols

development process 
R&D 
roadmap



Reinventing Polymers



Buildings can be cooled and heated 
with less energy and carbon emissions

Significant problems we solve: 

More than 25% of all buildings in 
the US are water-damaged [2]

Buildings use about 50% of their 
energy for heating and cooling [1]

Our first market – Net Zero 
Construction

We can reduce dampness and 
water damage in buildings

1. Source: European Commission
2. Source: Surviving mold

https://www.survivingmold.com/


Transforming semi-crystalline polymers 
into fully crystalline Super Polymers

Apply our 
proprietary process

Raw Material
40-50% crystalline

100% crystalline 
polymer

Provided as powder, 
emulsion or additive

Organize the raw 
polymer differently

We take commercial 
grade raw polymers 

Based on technology transfer   3 national phase applications   1 patent accepted [CN]

Input Process Output



Unique morphology leads to new and 
improved properties

High refractive 
index

Heat shielding Air 
encapsulation

Hydrophobicity

Excellent 
waterproof

Very low heat 
conductivity

Irradiated 
heat 

scattering

Cost effective

      



> 10 o C 
less heat transfer

Environmental impact

Plaster 
sample with 
no SP

• Lower dry weight by 20%
• 50% less water absorption
• Improved whiteness

Plaster 
sample with 
5% SP



A word on using recycled HDPE

rHDPE granules [black] and SP layer made from it [white] 

Crystallinity of rHDPE improves by 36% in first trials

Crystalline morphology is 
indicated by a hydrophobic 
surface



Traction from first tech demonstrations 

8 POs for Sample 

testing

3 Joint projects are 

negotiated with 
strategic partners

14 Potential strategic 

partners are in 
dialogues

Construction materials

Consumer electronics

Paint & Coating Packaging

Chemicals

Raw materials



Super mission - super team

Hagai Ortner CEO and 
Co-founder

27 years of 
management and 
startup development

Atzmon Amitai 
Director and Co-
founder

35 years as a product 
growth expert in the 
chemicals industry

Dr. Evgeniy 
Mervinetsky
Head of R&D

Ph.D. in Chemistry
15 years of research 
and development 
experience

Adva Bar-On, Paint 
development
consultant

Chemist, with 35 years 
of experience in paint 
& coating formulations



Ask

A year from now:

1. Kg’s/month process to 

supply samples

2. Product validation with 

strategic partner

Use of proceedsPre-seed SAFE round

• Closing a preseed SAFE round 

of $1M with $300K open to 

investors

• SAFE terms: 

$5m Cap, 15% discount



Thank you!
hagai@super-polymer.com

+972-58-7263197

www.super-polymer.comOur site Our LinkedIn



Denied Camera Area Sensing - HealthCare Settings

Barak Katz (PhD)
barakkatzz@gmail.com
+972-528744474

Boaz Tadmor (MD)

AntisepTech

mailto:barakkatzz@gmail.com


M
onitor Interact Educate Prevent

Summary

AntisepTech -Company Proprietary & Confidential

Malpractice and improper care are the main causes for infections, abuse, bedsores, and falls, few of the most expensive Never Events 
in healthcare settings. Current technological solutions fail in automatic detection, understanding and reporting meaningful events 
and behaviors in private areas, such as patients' rooms, that may prevent and control such Never Events in the healthcare settings.

AntisepTech 3D patented AI solution which comply with HIPPA requirements, addresses several healthcare use cases such as abuse, 
infections (HAI) control and prevention, bedsores control and prevention, falls control and prevention, restlessness situation etc. Use 
cases that are relevant both to homecare, hospitals, nursing home, rehab centers and a like 

AntisepTech solution enables real time reliable automatic detection of behavioral patterns that may indicate improper care or 
potential malpractice. Moreover, the ability to automatically and reliably understand such events allows us not only to collect 
meaningful data and report it, but also allows us to provide real time meaningful alerts, and the ability to collect and stream 
meaningful anonymous visual data that assist in understanding remotely activity inside private settings that facilitates interventions 
that may prevent Never Events and malpractice. Such intervention modify behavior and provide patients, stuff and families better 
hospitalization experience and peace of mind.

The proposed solution is the first and only solution that comply with the Israeli law with the aim of "locating and preventing harm to 
inpatients in a geriatric hospital through the installation of cameras inside patient room while preserving, as much as possible, the 
dignity and privacy of the inpatients and the employees in the hospital."

AntisepTech solution is currently installed in clinical settings at a long-term autistic nursing home and protects low functioning 
autistic adult from abuse and improper care inside his private room. The solution automatically detects proximity events below 
50cm, records the event of proximity, records access to patient bed at night, records staff entrance at night with accordance to 
institutional requirements, while maintaining the dignity and privacy of patient and staff while complying with the Israeli law.   

In addition, AntisepTech gain significant traction for its HAI use case from healthcare leaders. Recently AntisepTech, jointly with the 
Hospitals Division of the Israeli Ministry of Health, Dorot Geriatric & Rehab Center and the Israeli Innovation Authority, won a grant 
that aims to expend the clinical trial currently conducted in the autistic institution to three different beds in the Dorot Geriatric 
Center addressing abuse/bedsores/falls control and prevention uses cases.



The Unmet Need

Quality-of-Care HAI

Lack of Monitoring & Prevention at
“Camera-Denied” Areas in the HealthCare Settings

Abuse

What if an interactive AI robotic “observer” is placed inside patients’ room? 
Would it assist with better understanding or predicting abuse? Prevent HAI?

Would safety events, negligence or medical errors may be observed or predicted?
Could we provide a better Quality-of-Care? Provide peace-of-mind to the patient/family/stuff/management?  

Could we reduce the massive costs associated with such undesired “never events”?

AntisepTech -Company Proprietary & Confidential

M
onitor Interact Educate Prevent



AntisepTech -Company Proprietary & Confidential

M
onitor Interact Educate Prevent

HAI

Falls

Bedsores

Abuse

The Problem



M
onitor Interact Educate Prevent

Solution

AntisepTech -Company Proprietary & Confidential

Depth only
Ethical/Privacy

Protected 
Information

Surface 
Hygiene

HCWs
Productivity

Hand 
Hygiene

Abuse

Hand contact 
Detection

11110191 10754924
Hygiene 

63/452,834



M
onitor Interact Educate Prevent

AntisepTech -Company Proprietary & Confidential

The Market – US



M
onitor Interact Educate Prevent

Current Status - Recording

AntisepTech -Company Proprietary & Confidential

EVENT #3



M
onitor Interact Educate Prevent

Current Status - Analytics

AntisepTech -Company Proprietary & Confidential

Violence Control & Prevention:
EVENT #1                Room entrance                  between 2100 & 0600   
EVENT #2         Room stay > 60 sec                  between 2100 & 0600
EVENT #3        Approaching patient bed         between 2100 & 0600
EVENT #8     Movements during sleeping       between 2100 & 0600
EVENT #9              Proximity < 50 cm                               24/7               .



Traction - AntisepTech
#1st Place – National Competition 

Empowering the People

Clinical pilot – Kfar Ofarim, ALUT Israel (Geriatric/Autistic)
 

On going discussions – Israel Minister of Health Hospitals Division

AntisepTech -Company Proprietary & Confidential

M
onitor Interact Educate Prevent



1

2

10

1. Abuse
2. Bedsores
3. Falls
4. Infections



AMaze

Future Traffic Management
Beyond Autonomic Vehicles

Hannah Yair, Shlomi Dolev, Ehud Gudes

CSCML 2023



The Problem

• Time

• Money

• Pollution

• Accidents



The Opportunities 



The Technology

• A new algorithm that is based on graph methods for
identifying real-time platoons

• A new algorithm that synchronizes vehicles into junctions
by scheduling a timing, based on dynamic programming 
and scheduling the vehicles accurately

• Solved the scheduling timing for the extended problem 
(not only for one junction)

• Cyber security solution for the sever identification 
problem in V2V communication

• One is approved one is ending patents

• The algorithms are implemented by the Sumo simulator [1]  
and can demonstrate any kind of map on Google maps



Train Replacement



The Solution



Traffic Control



The Solution



Junction Management



The Solution



Extended Problem



Insecure Communication

1. All is 
well?

2. Better 
slow 
down……..

3. All is well 
keep up the 
pace… 4. Yellow 

car?

5. I am yellow 
…



Proposed Approach

• Certificate Authority (CA)

• Certificate pre-processing

• Certified signed attributes

• Certified signed public key

• Out-of-band channel of communication

• Vehicle authentication with verifiable attributes

• Certified coupling in public key and attributes



• The Product:

Traffic Management Algorithms

• The Target Audience: 

Transportation authorities and urban planners, 

Traffic engineers and designers, 

Policy-makers and government officials.

• The result can be used in airplane scope and robotics (drones).

Go to Market



Go to Market
• The Value: 

Efficient resource utilization, 

Improved traffic flow, 

Enhanced safety, 

Reduced travel time, 

Environmental benefits.

• We try to collaborate with IAI and ISTRC.

• The research was awarded an honors scholarship by ISTRC.



Timeline

Design 6 MONTHS

MVP 6 MONTHS

POC 6 MONTHS

Business
Development 6 MONTHS

Marketing
6 
MONTHS



The Market’s Competitors

• Focuses on a traffic management 
platform that utilizes connected 
vehicles' data and intelligent edge 
sensors to optimize traffic flows and 
reduce accidents in real-time. 

• Transforms traffic signals into smart 
infrastructure capable of 
understanding the complete traffic 
picture and responding to road 
users. (by AI modles)

• Aims on synchronize vehicles at 
junctions by scheduling timing using 
dynamic programming, enabling 
accurate vehicle scheduling to 
optimize traffic flows and reduce 
accidents in real-time. 

• Analysies the data from the GPS's 
and gives instructions to the vehicle 
at junctions. (By graphs and DP 
algorithms)



B2B



The Market
[2]

[3]



The Team

Ms. Hannah Yair Prof. Shlomi Dolev Prof. Ehud Gudes

PhD Candidate
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